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ABSTRACT 

 
Today’s systems contain multiple, independent sensors.  The information from each sensor is 

easier to calculate and understand in a coordinate system that is related to a specific sensor measurement 

(e.g., radar, infrared, etc) instead of the reference frame that is desired by the user.   

Coordinate transformations are of great importance to convert information between the various 

reference frames.  For example when a Laser Range Finder is used to estimate the geographical location 

of an object, we convert the range vector into the local coordinate system and add it to our geographical 

position.  There are many different coordinate systems, based on a variety of geodetic datums (geodetic 

datums defines the size and shape of the earth and the origin and orientation of the coordinate systems 

used to map the earth), units, projections, and reference systems in use today.  The common coordinate 

frame used is the geodetic system which gives the latitude (North or South angle between any point and 

the equator), longitude (East or West angle of any point and the Greenwich meridian) and the altitude 

(elevation).   

              This presentation is educational and defines some basic coordinate systems and the 

mathematical processes used to show transformations between them.  It provides a brief description of 

local and global systems for use in precise positioning, navigation, and geographic information systems 

for the location of points in space [1].  First we focus on several different coordinate systems and their 

application for the user.  Finally we present some test cases, verification and validation of several 

algorithms in this document.  
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CHAPTER I                                                                                            

INTRODUCTION 

 
A coordinate system is a reference frame which is used for measurements of angles, directions, 

locations and distances.  A coordinate system in a plane or in n-dimensional space is a systematic method 

of assigning a pair or an n-tuple of numbers to a point in the plane or in n-dimensional space 

(respectively) which describe its position uniquely.  Therefore a coordinate is a component of a vector in 

a vector space and so a coordinate system is used to represent a vector space.  For example a point in 

space with the coordinates (x, y, z) as (-1, 2, 1) means that this 3-tuple point is -1 unit away from the 

origin on the x-axis, +2 units away from the origin on the y-axis, and -1 unit away from the origin on the 

z-axis.  The origin is the point where the x-axis, the y-axis and the z-axis intercept.   Therefore any 

representation or plot of a point always uses a coordinate system so that the representation has a meaning.  

Although a specific coordinate system is useful for numerical calculations in a given space, the space 

itself is considered to exist independently of any particular choice of coordinates [2].   

Coordinate Systems have always been of great importance for use in precise positioning, 

navigation, and geographic information systems for the location of points in space.  The need to use more 

than one coordinate system arises from the fact that many different physical phenomena are easier 

calculated or understood in a system that is appropriate the phenomenon.  The choice on the coordinate 

system used to solve a problem depends on the objectives that one wants to obtain as even though you 

change the coordinate system to represent a point, that point itself does not changes.  For example a 

geographical coordinate system will express every point on earth in the spherical using the latitude, the 

longitude and the altitude.  In this case any point on earth can be specified.  Sometimes this information 

may not be available; instead, other parameters are given.  Therefore the need to transform from one 

coordinate system to another is necessary.  Note that even though reference system and reference frame 

are most of the time interchanged, it is important to know the difference between these two concepts.  A 

reference system is the conceptual idea of a particular coordinate system, while a reference frame is the 

practical realization of a reference system by observations and measurements.   
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This document is for educational purpose and defines some basic coordinate systems and the 

transformations or algorithms between them.  There are many different coordinate systems, based on a 

variety of geodetic datums (geodetic datums defines the size and shape of the earth and the origin and 

orientation of the coordinate systems used to map the Earth), units, projections, and reference system in 

use today.  Coordinate systems will help Raytheon engineers to understand better how Raytheon sensors 

information can be useful by converting this information to for example a North East Down (NED) 

coordinate frame.  
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CHAPTER II                                                                                           

BACKGROUND 

We will define some basic coordinate systems which will include the Cartesian Coordinates, the 

Polar Coordinates, the spherical Coordinates and the transformations between them. 

2.1  Rotat ion  vs .  Transformation  

We define an operational concept for a solution by describing the different parameters used in the 

coordinate systems definition.  The angles described above are rotation or transformation angles and are 

defined based on the mathematical principals below: 

• The position of a rigid object in space can be defined by 6 parameters: 3 transformations plus 3 

rotations. 

• A “rotation” matrix rotates a vector in a given reference frame. 

• A “transformation” matrix transforms a vector from one reference frame to another reference frame. 

• Rotation and Transformation are related by transposition. 

• The inverses of transformation and rotation matrices are their transposes. 
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                                                                 Figure 1. Rotation. 
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       Figure 2. Transformation. 

 

The following are true for rotation and transformation.  

                                                          [R] = [T]
t 
= [T]

-1
 

                                                          [T] = [R]
t 
= [R]

-1
 

The transformation matrices of an angle θ around the positive X, Y and Z axes are given by:  
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2.2  Right-handed vs .  Lef t -handed 

A rotation about a directed axis is called positive, or right-handed if it causes a right-handed 

screw to advance in the positive direction of the axis.                                                           

 
 

Figure 3. Right-handed Screw. 

The default coordinate system is the right-handed coordinate system.  In this case, the positive X and Y 

axes point out of the paper and right and up respectively and the positive Z axis points up.  The positive 

rotation is counterclockwise about the axis of rotation illustrated in the following below:  

 

 

 

 

 
                                                                                                                                                                        

Figure 4. Right-handed Coordinate Frames.                                                                          
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In the left-handed coordinate system, the positive X, Y and Z axes point forward, right and down 

respectively.  The positive rotation is clockwise about the axis of rotation as illustrated in the figures 

below: 

 

 

 

Figure 5. Left-handed Coordinate Frames. 

 

 

A standard right-handed coordinate system with right-handed rotation about the positive X, Y, Z axes are 

shown below: 

 

 

 

Figure 6. Right-handed Rotation. 
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• The right handed motion along +X would cause +Y to move toward +Z 

• The right handed motion along +Y would cause +Z to move toward +X 

• The right handed motion along +Z would cause +X to move toward +Y 

2.3  Standard  Cartes ian  Coordinate  Systems 

2 .3 .1  Two Dimens ional  Coordinates  

The two dimensional Cartesian coordinate system is used to represent a point uniquely in the 

plane.  It is usually defined by two orthogonal axes, the x-axis and the y-axis defining a plane that is 

referred to as the xy-plane. Given each axis, choose a unit length, and mark off each unit along the axis, 

forming a grid. To specify a particular point on a two dimensional coordinate system, indicate the x unit 

first, followed by the y unit in the form (x,y), called an ordered pair. 

 

 

 

Figure 7. 2-D Cartesian Coordinate Frame. 
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2.3 .2  Three  Dimens ional  Coordinates  

The three dimensional Cartesian coordinate system provides the three physical dimensional of the 

space which includes length, width and height, usually represented by three orthogonal axes at the 

intersection point, the x-axis, the y-axis and the z-axis.  

 

 

 

Figure 8. 3-D Cartesian Coordinate Frame. 

2 .4  Polar  Coordinates  

The polar coordinate system is a two-dimensional coordinate system in which each point on a 

plane is determined by a distance and an angle.   
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2.4 .1  Circular  Coordinates  

The circular coordinate system is a two-dimensional polar coordinate system, defined by an 

origin and a polar axis.  A point is represented by a pair (r,θ) where the radius r is the distance from the 

origin to the point and the azimuth θ (0 ≤ θ ≤ 360 ) is the angle between the positive x-axis and the line 

from the origin to the point.   

 

 

                  Figure 9. Circular Coordinate Frame. 

 

 

2.4 .2  Cyl indrica l  Coordinates  

The cylindrical coordinate system is a three-dimensional coordinate system which extends the 

circular polar coordinate by adding a third coordinate to measure the height of a point above the plane. 

A point in a cylindrical coordinate is represented by (r,θ,h). 
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Figure 10. Cylindrical Coordinate Frame. 

 

2.4 .3  Spherica l  Coordinates  

The spherical coordinate system is a coordinate system for representing geometric figures in three 

dimensions.  A point is represented by (ρ,φ,θ), where ρis the radial distance of a point from the origin, φ 

is the zenith angle from the positive z-axis and θ is the azimuth angle from the positive x-axis. 
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 Figure 11. Spherical Coordinate Frame. 

   

2.5  Transformations  between  some bas ic  coordinate  systems 

2 .5 .1  Cyl indrica l  vs .  Spherica l  Coordinates  

Given a point (r, θ, h) in the cylindrical coordinate system can be converted in the spherical 

coordinate system by the following formulas: 

 

 

 

And vice versa, a point (  in the spherical coordinate is represented in the cylindrical 

coordinate with the following formulas:  
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2 .5 .2  Cartes ian  vs .  Spherica l  Coordinates  

The figures below show the conversions from the 3-D Cartesian coordinate to the Spherical 

coordinate: 

 

Figure 12. Transformations Processes. 

 

The blue color illustrates the xy-plane from both figures.  Using the Pythagorean Theorem we obtain the 

following formulas:  
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Therefore the conversion from the Spherical coordinate to the 3-D Cartesian coordinate is represented by 

the given formulas: 

 

 

Conversely we have the following:  

 

 

This gives the conversion formulas from Cartesian to Spherical coordinates given by: 

 

 

 

 

With the following constraints: 
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2.5 .3  Cartes ian  vs .  Spherica l  Coordinates  

Depending on whether one considers the earth as a Sphere or an Ellipse, a point P on earth is 

represented in the figures below:  

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

Figure 13. Spherical vs. Ellipsoidal. 
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CHAPTER III                                                                                                                                        

REQUIREMENTS AND COORDINATE SYSTEMS APPLICATIONS  

3 .1  Project  Descript ion  

Besides finding the location of a target and computing the distance between targets, Coordinate 

Systems have several applications with the EOIR Sensor, the GPS and the ANS.  These sensors combined 

with several platforms help in Target Tracking, Gap and Distance, Sensitivity Map, Blind Arc, Sight to 

Crest, Follow Up Surveillance, etc.  Only platform independent coordinate systems will be discussed in 

this document.  System engineering principles will be used to derive and implement some algorithms 

between these platform independent coordinate systems.   

Build a System of Coordinate Frames that allows one to convert the coordinates of any given 

point in a given coordinate system to a different coordinate frame using the Systems Engineering and 

Architecture Principles [3, 4].  Some applications will include the GPS, EOIR and the ANS sensor 

coordinate systems. 

The project will consider the different transformations and derive some algorithms that will help 

in computing Target location, Gap and Distance, the Sight to Crest, Follow up Surveillance or Blind Arc.  

Because this document will be available to the general public, only general information will be provided 

concerning the above applications.  However different applications will be considered to illustrate how 

System Engineering Process helps in problem solving.  The information in this document will be solely 

for educational purpose.  The figure below gives an overview. 
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Figure 14. Platform Independent Coordinate Systems Overview. 

 

 

Normal arrows between nodes represent direction of rotation angles about an axis.   

Node 0 → node 1: Ωt is rotational angel about Z axis 

Origin of axes is unchanged 

Bold arrows between nodes represent vector shifts from origin.   

Node 2 → node 3: RANS shifts from ECEF to ANS centered; 

V3 = V2’ - V2 

V3 (vector from ANS to target) 

V2’ (ECEF vector of target) 

V2 (ECEF vector of ANS) 

Direction of axes are unchanged. 
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• Transformation from node 10 to node 11 is obtained by a z-axis rotation about +ψ radians (nose right 

of north) 

• Transformation from node 11 to node 12 is obtained by y-rotation about +θ radians (nose about 

horizon) 

• Transformation from node 12 to node 13 is obtained by a x-axis rotation about +φ radians (right side 

down) 

 

3.2  Contextual  Archi tect ing  

3 .2 .1  Object ives  

Develop an algorithm document of library functions involving the EOIR and ANS sensors and 

associated coordinate systems.  The high level requirements are listed below and any possible derived 

requirement will follow during the development of this project.  

• The algorithm document shall define some basic coordinate systems and the mathematical processes 

used to show transformations between them.   

• The algorithm document shall show data flows among the system functions.  

• The algorithm document shall focus on how a vector in one coordinate system is represented in 

another coordinate system in 3-D. 

• The algorithm document shall show some real life applications involving the systems of coordinates 

used.  

• The algorithm document shall illustrate each algorithm showing some test cases. 

• The computations in these algorithms shall be more accurate than the sensor measurements. 

• The library functions derive from the algorithms shall execute fast. 
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3.2 .2  Tasks  

The tasks for the Contextual Architecture consist of gathering some interrogative data in order to 

build the system of coordinate.  By answering the Who, What, Where, Why, How and When questions 

one tries to identify the following: 

• Organize interrogative data 

• Perform review of interrogative data 

• Define scope and boundaries 

• Perform review of scope and boundaries 

• Identify and prioritize quality attributes 

• Perform review of quality attributes 

3.2.2.1 Why 

 
            The goals for the system of coordinate are listed below: 

• Describe the relative position and orientation of objects. 

• Define mathematical transformations between coordinate systems. 

• Represent a view of the scene in multiple coordinate frames. 

• Represent the positions in a user-defined “common” coordinate frame. 

• Define coordinate frames so that vectors in different coordinate systems can be easily transformed 

and combined (this process normally occurs in ECEF coordinate frame instead of NED coordinate 

frame). 

• Compute the Gap And Distance between objects using the Laser Range Finder.  Will use only this 

example for this project.   

3.2.2.2 Who 

 
            Stakeholders of the System of Coordinate frames are: 

• Raytheon 
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• Texas Tech University 

• General Public 

• FCS Vehicles 

• EOIR Sensor 

• ANS 

• Fire Control 

 

 

3.2.2.3 What 

 
            The entities used are: 

• Sensor coordinate frame 

• EOIR coordinate frame 

• Turret coordinate frame 

• Barrel coordinate frame 

• Vehicle coordinate frame 

• ANS coordinate frame 

• Compass coordinate frame 

• ANS Base coordinate frame 

• ECEF coordinate frame 

• Geolocation coordinate frame 

3.2.2.4 How 

 
The System of Coordinate Frames will show the transformations between different coordinate 

frames. 
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3.2.2.5 Where 

 
The System of Coordinate Frame will be used anywhere on Earth and on any platform (military 

vehicles or airplanes). 

3.2.2.6 When 

 
The System can be used at anytime, on a stationary or moving platform.  

3.3  Operat ional  Archi tect ing  

This part documents key operational information for the coordinate systems. 

3.3 .1  Object ives  

Define the different coordinate frames involved in the system. 

• ECI – Earth Centered Inertial.  An inertial frame is a reference frame in which Newton’s laws of 

motion apply, and so this coordinate frame does not rotate and also does not accelerate, but it 

translates with the earth.  The origin of ECI is arbitrary and the axes may point in any three mutually 

perpendicular directions.  The axes obey the right-handed coordinate systems.  For practical reasons 

ECI may be defined to be coincident with the earth’s center of mass at any given time.  Classical 

mechanics assume the equivalence of all reference frames as time flows at the same rate in all 

reference frames.                                                                                            

• ECEF – Earth Centered Earth Fixed rectangular coordinate frame (a.k.a. geocentric) of the target 

(ECEFT) and of the ANS (ECEFA).  The origin is fixed to the center of the earth and the axes rotate 

relative to the inertial frame at 7.3 rad/s.  The Z axis through the North Pole, the X axis 

through the intersection of the equator and the Greenwich Meridian (longitude and latitude are equal 

to zero) and the y axis is defined to complete the right-handed coordinate system.  ECEF coordinate 

frame rotates and translates with the earth. 
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• Sensor – A sensor frame is defined for every direction sensitive axis.  It includes each accelerometer, 

gyro and magnetometer axis.  The sensor coordinate frame allows for formal accounting of sensor 

misalignment and the axes will be Forward, Up and Transverse. 

• Body or Vehicle – The body or vehicle coordinate frame is the natural frame for control surface and 

vehicle attitude control.  It determines the position of a vehicle based on measurements from various 

sensors attached to a sensor platform on the vehicle.  It is attached to the vehicle of interest, usually at 

a fixed point such as the center of gravity.  The orientation of the axis is not unique, but for aircraft 

and underwater vehicle the axes are defined as follows:  the x axis is defined in the forward direction, 

the z axis is defined pointing to the bottom of the vehicle and the y axis completes the right-handed 

orthogonal coordinate system.  This coordinate frame is frequently used in navigation and the body to 

platform transformation is important for calculating control outputs during active guidance. 

• Platform – The platform coordinate frame defines three orthogonal axes with a fixed orientation 

relative to the body frame.  The platform coordinate frame is transformed to the navigation frame 

when aggregating navigation information for vehicle control.  Its coordinate axes are usually 

normally defined to have the same directions as the vehicle axes.  The origin of the platform 

coordinate system is an arbitrary point on the platform, usually the location of the accelerometers.  

The origins of the body and the platform coordinate systems may be offset by a constant vector.   

• Tangent Plane – The tangent plane coordinate frame is the locally assigned Cartesian coordinate 

frame.  The ground level as at zero altitude and the axes are usually East, North and Up.  

• Compass – North, East, Down reference frame (Geographic).  The X axis through the local longitude 

line toward the North Pole and the Z axis down.  The y axis points east to complete the orthogonal, 

right-handed rectangular coordinate system. 

• Geolocation – ANS/GPS reference frame: Latitude, Longitude, Altitude.  This coordinate frame is 

based on the WGS84 ellipsoid earth model.  
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• Navigation – Autonomous Navigation System (ANS).  It is the coordinate frame used for path 

planning and other tracking and control purpose using the position, the velocity and the attitude.  

• ANS Base – Forward, Right, Under reference frame. 

• Target – LatitudeT, LongitudeT, AltitudeT of the target. 

• Local – Up, East, North reference frame. 

• Long(t=0) is the vehicle longitude at time = 0. 

• Ω is the constant Earth rotational rate (7.3 rad/s) 

• Long is ANS longitude.  

• Lat is ANS geolocation latitude.  

• ψ, θ, φ are ANS heading, pitch, roll about the Z, Y, X axis respectively.  

3.3 .2  Tasks  

We define an operational concept for a solution by describing the different parameters used in the 

coordinate systems definition.  The rotations and transformations used refer to the definitions in the 

background chapter. 

3.4  Logica l  Archi tect ing  

We define a logical organization for the system of coordinates. 

3.4 .1  Object ives  

• Describe the relative position and orientation of objects. 

• Define transformations between coordinate systems. 

• Represent a view of the scene in multiple coordinate frames. 

• Represent the positions in a user-defined “common” coordinate frame. 
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• Define coordinate frames so that vectors in different coordinate systems can be easily transformed 

and combined (this process normally occurs in ECEF coordinate frame instead of NED coordinate 

frame).  

3.4 .2  Tasks  

The diagram below defines a concept for a solution of the systems of coordinate frames.  The 

works here are broken down from high level to low level coordinate systems using the principle of divide 

and conquer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Coordinate Systems Flowchart 
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3.5  Phys ica l  Archi tect ing  

A physical organization, which includes the stakeholders, is defined as follow: 

3.5 .1  Object ives  

Show some examples from the coordinate frames below: 

• Compass (NED) to ANS Base. 

• Compass to Geocentric (ECEF). 

• Geolocation to Geocentric (ECEF). 

• Geocentric to Geolocation. 

3.5 .2  Tasks  

Show the process of representing a vector in the above coordinate frames. 

3.5.2.1 Compass to ANS Base  

 
A vector in the ANS Base coordinate frame (Forward, Right, Under) is given by: 

 

 

Notice that a vector in the Compass coordinate frame (North, East, Down) is given by:  

 

 

 

 

The transformation matrix from the Compass coordinate frame to the ANS Base coordinate frame is 

given by: 
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3.5.2.2 Compass to Geocentric (ECEF) 

 

 
 

 

 

 

 

 

 

Where the parameters lat and long represent respectively the geolocation latitude and the longitude of the 

ANS.  Therefore a vector in the ECEF coordinate frame is:  

 

 

Note that a vector in ECEF coordinate frame can also be written as:  
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3.5.2.3 Geolocation  to Geocentric (ECEF) 

 
Given the spatial ellipsoidal coordinates parameters latitude, longitude and altitude (φ, λ, h) in the 

Geolocation (Geodeic) coordinate frame, use Helmert’s WGS-84 formula to transform these coordinate 

parameters into rectangular coordinate parameters x, y, z in the Geocentric coordinate frame as follows: 

• Inputs Parameters in Geolocation position will be: 

♦ latitude in radians (similar to ANS)  

♦ longitude in radians (similar to ANS)  

♦ altitude in meters (similar to ANS)  

♦ Constants:   

• RE = 6378137.0 meters (equatorial radius), also called semimajor axis. 

• RP = 6356752.314 meters (polar radius), also called semiminor axis. 

♦ Computed constants: 

• f =  (RE – RP)/RE = 0.003352811 (Earth’s flattening coefficient) 

• e
2
 = f ( 2 – f ) = 0.006694380 (eccentricity of the ellipsoidal) 

• 
)(sin00.006694381

6378137

)(sine1

R
v

222

E

ϕϕ ×−
=

−
=  

v is the length of the normal to the ellipsoid, from the surface of the ellipsoid to its 

intersection with the ECEF z axis. 

• Output parameters in Geocentric coordinate system are in meters and are given by the formulas 

below: 
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Example: A geodetic target position defined by: ( ) ( )mmnh oo 702.251,20117,0.34,, =ϕλ  , has a 

computed position in the ECEF coordinate frame given by: 

( ) ( )345.3546587,706.4702442,829.2430601,, −−=zyx  meters. 

 

3.5.2.4 Geocentric To Geolocation 

 
We convert the WGS-84 Cartesian parameters x, y, z in the Geocentric coordinate frame into 

spatial ellipsoidal WGS-84 parameters in the Geolocation reference frame using the inverse of Helmerts’s 

formulas. 

• Inputs parameters (3×1 ECEF Geocentric vector) 

♦ x in meters (intersects 0° longitude & equatorial plane) 

♦ y in meters (intersects 90° longitude & equatorial plane)  

♦ z in meters (parallel to Earth Polar Axis) 

♦ Constants:   

• RE = 6378137.0 meters (equatorial radius) 

• f = 0.003352811 = 1 / 298.257223563  (Earth’s flattening coefficient) 

• Computed constants: 

• RP = RE ( 1 – f ) = 6356752.314 meters (polar radius) 

• e
2
 = f ( 2 – f ) = 0.006694380 
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The longitude λ is straight forward computed given x and y. 

If x
2
+y

2
 < 10000, position is < 16 microradians from either North or South Pole and so the longitude and 

the altitude are given by: 

p

222

R|z|h

|z|

yx)e(1

2

π
sign(z)

−=













 +−
−×=ϕ

 

 

Otherwise the longitude and the altitude are computed by iterative formulas given by: 

 

 

 

 

 

 

 

 

 
 

 

 

 

Matlab Implementation: 

%************************************************************ 

% Given the parameters x, y and z in the Geocentric coordinate system,          *  

% this subroutine computes the equivalent position Latutude, Longitue and     * 

% Altitude in the Geodetic coordinate system using the WGS84 parameters     * 

%************************************************************ 

  

function geocentric_to_geodetic(tol); 

% Inputs parameters in meters 

x=1171068.71; 

y=4370487.94; 

z=4494419.14; 

  

%Given constant numbers in WGS84 
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a=6378137.0;   % RE major axis----equatorial radius 

b=6356752.314;   % RP minor axis----polar radius   

% WGS84 ellipsoid constants: 

a = 6378137; 

e = 8.1819190842622e-2; 

%Computed variables 

f=(a-b)/a;    %flattening 

e=sqrt(f*(2.0-f));   % eccentricity 

  

%Initial guess 

lat0=atan((z/sqrt(x^2+y^2))*1/(1.0-e^2)); 

long=atan(y/x);   % This value is exact 

v0=a/sqrt(1.0-e^2*sin(lat0)*sin(lat0)); 

h0=(sqrt(x^2+y^2))/cos(lat0)-v0; 

  

% First iteration 

v=a/sqrt(1.0-e^2*sin(lat0)*sin(lat0)); 

h=(sqrt(x^2+y^2))/cos(lat0)-v; 

lat=atan((z/sqrt(x^2+y^2))*1/(1.0-v*e^2/(v+h))); 

  

%First iteration errors 

error1=abs(lat-lat0); 

error2=abs(h-h0); 

error=max(error1,error2); 

  

iter = 1; 

  

while ( error > tol )  

   lat1=lat; 

   h1=h; 

   v=a/sqrt(1.0-e^2*sin(lat)*sin(lat)); 

   h=(sqrt(x^2+y^2))/cos(lat)-v; 

   lat=atan((z/sqrt(x^2+y^2))*1/(1.0-v*e^2/(v+h))); 

   error1=abs(lat-lat1); 

   error2=abs(h-h1); 

   error=max(error1,error2); 

   iter = iter + 1; 

   fprintf(1,'%d   %5.10f   %5.10f   %5.10f\n',iter,error1,error2,error); 

end 

fprintf(1,'%d    %5.10f    %5.10f     %5.10f\n',iter,lat,long,h); 

 

Euler angles can also be calculated by a close form of the iterative formulas above, derived by Paul [5].   
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The matlab codes of this close form is given below: 

% ECEF2LLA - convert earth-centered earth-fixed (ECEF) 

%            cartesian coordinates to latitude, longitude, 

%            and altitude 

% USAGE: 

% [lat,lon,alt] = ecef2lla(x,y,z) 

% lat = geodetic latitude (radians) 
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% lon = longitude (radians) 

% alt = height above WGS84 ellipsoid (m) 

% x = ECEF X-coordinate (m) 

% y = ECEF Y-coordinate (m) 

% z = ECEF Z-coordinate (m) 

% Notes: This function assumes the WGS84 model. 

%        Latitude is customary geodetic (not geocentric). 

% 

 

function [lat,lon,alt] = ecef2lla(x,y,z); 

  

% WGS84 ellipsoid constants: 

a = 6378137; 

e = 8.1819190842622e-2; 

  

% calculations: 

b   = sqrt(a^2*(1-e^2)); 

ep  = sqrt((a^2-b^2)/b^2); 

p   = sqrt(x.^2+y.^2); 

th  = atan2(a*z,b*p); 

lon = atan2(y,x); 

lat = atan2((z+ep^2.*b.*sin(th).^3),(p-e^2.*a.*cos(th).^3)); 

N   = a./sqrt(1-e^2.*sin(lat).^2); 

alt = p./cos(lat)-N; 

  

% return lon in range [0,2*pi) 

%lon = mod(lon,2*pi); 

fprintf(1,'%5.10f    %5.10f    %5.10f\n',lat,lon,alt); 

return 

 

Example:  The computed ECEF target position can be converted in the geodetic coordinate frame.  

The iterative method gives: ( ) ( )0393m251.6973358571082rd,21rd,2.0470.59341195h,λ, =ϕ  with a 

tolerance of 
710 −

 and after five iterations.   

The close form gives: ( ) ( )5507m251.6972588571082rd,21rd,2.0470.59341195h,λ, =ϕ , which 

shows that both results are very close.  Converting the angle back to degrees will prove the reverse 

process, meaning converting from ECEF to Geodetic. 

 

3.5.2.5 NED Position Vector  

 
We compute the NED (North, East, Down) vector from the ANS location to the target location.   
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• Inputs parameters 

♦ Target position 

• latt = latitude of target in radians  

• longt = longitude of target in radians 

• altt = altitude of target in meters 

♦ ANS position 

• lata = latitude of ANS in radians  

• longa = longitude of ANS in radians 

• alta = altitude of ANS in meters 

• Output parameters: 

 

 

 

 

 

 

 

 

 

 

The output vector V10 in NED has its components x10, y10, z10 in meters. 

 

3.5.2.6 Slant Range To Target 

 
Compute the distance between the ANS and target location.   

• Inputs parameters: 
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♦ Target position: 

• latt = latitude of target in radians.  

• longt = longitude of target in radians. 

• altt = altitude of target in meters. 

♦ ANS position (or 2nd target position): 

• lata = latitude of ANS in radians.  

• longa = longitude of ANS in radians. 

• alta = altitude of ANS in meters. 

• Output parameters: 

Use ‘Geolocation position to Geocentric position’ function to convert the ANS and the target positions to 

get the following: 

Va = (xa, ya, za) for ANS and Vt = (xt, yt, zt) for the target.  The slant range is then the distance between the 

two points given by: 

 

                                        Slant range = sqrt[(xa-xt)
2
 + (ya-yt)

2
 + (za-zt)

2
]  

 

 

3.5.2.7 Compute Euler Angles From The DCM 

 
Any rotation matrix can be constructed as the product of at most three simple rotation matrices.  

The three angles in these rotations are referred to as Euler angles given as: 

Ψ is called the azimuth, heading or yaw angle.  It is the rotation about the z axis. 

3.5.2.6 NED Position Vector 

 
Compute the North East Down vector from the ANS position to the target position.   

• Inputs parameters: 

♦ Target position: 



 34 

• latt = latitude of target in radians.  

• longt = longitude of target in radians. 

• altt = altitude of target in meters. 

♦ ANS position: 

• lata = latitude of ANS in radians.  

• longa = longitude of ANS in radians. 

• alta = altitude of ANS in meters. 

• Output parameters: 

A vector V10 in node 10 given by: 

                                       

 

 

 

 

 

 

 

 

 

 

 

3.5.2.7 Compute Euler Angles From The DCM 

 
Any rotation matrix can be constructed as the product of at most three simple rotation matrices.  

The three angles in these rotations are referred to as Euler angles given as: 

• is called the azimuth, heading or yaw angle.  It is the rotation about the z axis. 
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Figure 16. Yaw Euler Angle Rotation. 

 

• θ is called elevation or pitch angle.  It is the rotation about the y axis. 
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Figure 17. Pitch Euler Angle Rotation. 
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• φ is the roll angle.  It is the rotation about the x axis. 
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Figure 18. Roll Euler Angle Rotation. 

 

 

The Direction Cosine Matrix (DCM) is the transformation matrix from node 10 to node 13 (see 

figure 14).  This matrix is obtained by a series of rotations first about +Z, second about +Y, third about 

+X and is given by:  
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The rotation angles ψ, θ, φ are heading, pitch and roll. 

The corresponding Euler angles are given by: 
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The Euler angles are in radians.  One useful application of the Euler angles is that instead of specifying 

the attitude of one coordinate system relative to another by using the 9 direction cosine angles, a 

transformation can be represented by the product of three successive transformations about the 

coordinate’s axis.  For example, in artillery nomenclature, the barrel of the gun can be oriented to point 

anywhere in the sky by specifying azimuth (yaw) and elevation (pitch).  The third transformation (rolling 

about the barrel axis) is not required.  

 

3.5.2.8 Converting Pixel Coordinates To Sensor Coordinates 

 

• Nx = number of horizontal x-pixels  

• Ny = number of vertical y-pixels  

• xp = x-pixel position for WMI cursor                           

• yp = y-pixel position for WMI cursor 

• xc = (Nx-1)/2 = center x-pixel 

• yc = (Ny-1)/2 = center y-pixel 

• FOVy = the Field Of View in the vertical direction  

♦ Wide FOV  

♦ Narrow FOV  
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♦ Ultra-Narrow FOV  

• FOVx = the Field Of View in the horizontal direction.  It is usually a function of FOVy.  

• The direction of the position vector pointing from the center of the Sensor to the position of the WMI. 

cursor in the Sensor coordinate frame is given by:   

 

 

 

 

 

  

 

 

3.5.2.9 Converting From Azimuth, Elevation, Range To NED 

 
Given the azimuth, elevation and range of a point (az, el, r) from the EOIR coordinate system, 

one can find the corresponding point (x, y, z) in the NED coordinate using the following formulas: 

 

 

 

A matlab codes to implement the above transformation is given below: 

function ned = convertAzElRange2NED(az, el, r) 

%   Float64 azElRange[X_Y_Z_COORDINATE],    // in 

%   Float64 ned[X_Y_Z_COORDINATE])          // out 

%---------------------------------------------------------------------- 

% This function converts from Az, El, Range coordinates to  NED 

% coordinates. 
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% ned 

%    North, East, Down coordinates in meters 

% 

% azElRange 

%    Azimuth, elevation in radians and range in meters. 

%---------------------------------------------------------------------- 

  % az = azimuth radians 

  % el = elevation radians 

  % r = range meters 

   ned = zeros(3,1); 

   ned(1) = r * cos(az) * cos(el);  % north meters 

   ned(2) = r * sin(az) * cos(el);  % east meters 

   ned(3) = -r * sin(el);           % down meters 
 

 

 

3.5.2.10 Converting from Latitude, Longitude, Altitude To Azimuth, Elevation And Range 

 
Converting a target position (olat, olon, oalt) to azimuth, elevation and range takes into account 

the position of the ownship and a matlab code to implement this conversion process is given below.  

 

function AzElRange = convertLtLgAl2AzElRange(olat, olon, oalt, elat, elon, ealt) 

  

% in oLtLgAl[X_Y_Z_COORDINATE], tLtLgAl[X_Y_Z_COORDINATE]  

% out ned[X_Y_Z_COORDINATE])       

%---------------------------------------------------------------------- 

% This function converts latitude, longitude, and altitude 

% coordinates to north, east, down coordinates. 

% 

% ltLgAl 

%    Latitude, Longitude, Altitude coordinates 

% 

% ned 

%    North, east, down coordinates. 

% 

% ---------------------------------------------------------------------- 

   

   % Initializing the matrices 

   % oLtLgAl = zeros(3,1); 

   % tLtLgAl = zeros(3,1); 

   ned = zeros(3,1);  

   % ellipsoidal model constants for WGS-84 

   RE = 6378137.0; % equatorial radius (meters) 

   F = 1.0 / 298.257223563; % flattening 

   ESQUARED = (2.0 - F)*F; % eccentricity squared 

   ONEMINUSESQUARED = 1.0 - ESQUARED; % 1.0 - e^2 
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   % Float dlon; delta longitude (radians) 

   % cosolat, sinolat, coselat, sinelat;  cosines & sines of latitudes 

   % orc, erc; origin & endpoint longitudinal radius of curvature (meters) 

   % x component parallel to a vector from Earth center to equator at olon 

   % z component parallel to a vector from Earth center to equator at  

   % olon+pi/2 

   % dlon; delta longitude 

  

   % olat = oLtLgAl(0); % geodetic latitude of the ownship of the NED   

   % coordinate set (radians) 

   % olon = oLtLgAl(1); % geodetic longitude of the ownship of the NED  

   % coordinate set (radians) 

   % oalt = oLtLgAl(2); % geodetic altitude of the ownship of the NED  

   % coordinate set (meters) 

   % elat = tLtLgAl(0); % geodetic latitude of the target of the NED vector  

   % (radians) 

   % elon = tLtLgAl(1); % geodetic longitude of the target of the NED vector  

   % (radians) 

   % ealt = tLtLgAl(2); % geodetic altitude of the target of the NED vector  

   % (meters) 

  

   % Compute delta longitude 

     dlon = elon - olon; 

  

   % Compute cosines & sines of latitudes & longitudes of origin & endpoint 

     cosolat = cos(olat); 

     sinolat = sin(olat); 

     coselat = cos(elat); 

     sinelat = sin(elat); 

  

   % Compute the latitudinal radius of curvature for the origin and endpoint 

     orc = RE / sqrt(1.0 - ESQUARED * sinolat * sinolat); 

     erc = RE / sqrt(1.0 - ESQUARED * sinelat * sinelat); 

  

   % Compute the component that is parallel to a line from the earth's 

   % origin to the equator at the longitude of the NED vector's origin 

     x = (erc + ealt) * coselat * cos(dlon) - (orc + oalt) * cosolat; 

  

   % Compute the east component of the NED vector 

     ned(2) = (erc + ealt) * coselat * sin(dlon); 

  

   % Compute the component that is parallel to a line from the earth's 

   % center to the north pole, with z=0 at the (olat, olon, oalt) location 

     z = ((ONEMINUSESQUARED) * erc + ealt) * sinelat - ((ONEMINUSESQUARED) *   

     orc + oalt) * sinolat; 

  

   % Transform x and z to produce the north and down components 

     ned(1) = cosolat * z - sinolat * x; 

     ned(3) = -sinolat * z - cosolat * x; 

    

   % Transform ned back to Az, El, Al 
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     AzElRange = zeros(3,1); 

     AzElRange = convertNED2AzElRange(ned(1), ned(2), ned(3)); 
 

 

 

3.5.2.11 Converting From Latitude, Longitude, Altitude To NED 

 
 

function ned = convertLtLgAl2NED(olat, olon, oalt, elat, elon, ealt) 

  

% in oLtLgAl[X_Y_Z_COORDINATE], tLtLgAl[X_Y_Z_COORDINATE]  

% out ned[X_Y_Z_COORDINATE])       

%---------------------------------------------------------------------- 

% This function converts latitude, longitude, and altitude 

% coordinates to north, east, down coordinates. 

% 

% ltLgAl 

%    Latitude, Longitude, Altitude coordinates 

% 

% ned 

%    North, east, down coordinates. 

% 

% ---------------------------------------------------------------------- 

  % Initializing the matrices 

   % oLtLgAl = zeros(3,1); 

   % tLtLgAl = zeros(3,1); 

     ned = zeros(3,1); 

      % ellipsoidal model constants for WGS-84 

     RE = 6378137.0; % equatorial radius (meters) 

     F = 1.0 / 298.257223563; % flattening 

     ESQUARED = (2.0 - F)*F; % eccentricity squared 

     ONEMINUSESQUARED = 1.0 - ESQUARED; % 1.0 - e^2 

    % Float dlon; delta longitude (radians) 

   % cosolat, sinolat, coselat, sinelat;  cosines & sines of latitudes 

   % orc, erc; origin & endpoint longitudinal radius of curvature (meters) 

   % x component parallel to a vector from Earth center to equator at olon 

   % z component parallel to a vector from Earth center to equator at   

   % olon+pi/2 

   % dlon; delta longitude 

    % olat = oLtLgAl(0); % geodetic latitude of the ownship of the NED  

   % coordinate set (radians) 

   % olon = oLtLgAl(1); % geodetic longitude of the ownship of the NED  

   % coordinate set (radians) 

   % oalt = oLtLgAl(2); % geodetic altitude of the ownship of the NED  

   % coordinate set (meters) 

   % elat = tLtLgAl(0); % geodetic latitude of the target of the NED vector  

   % (radians) 

   % elon = tLtLgAl(1); % geodetic longitude of the target of the NED vector  

   % (radians) 

   % ealt = tLtLgAl(2); % geodetic altitude of the target of the NED vector  
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   % (meters) 

    % Compute delta longitude 

     dlon = elon - olon; 

    % Compute cosines & sines of latitudes & longitudes of origin & endpoint 

     cosolat = cos(olat); 

     sinolat = sin(olat); 

     coselat = cos(elat); 

     sinelat = sin(elat); 

  

   % Compute the latitudinal radius of curvature for the origin and endpoint 

     orc = RE / sqrt(1.0 - ESQUARED * sinolat * sinolat); 

     erc = RE / sqrt(1.0 - ESQUARED * sinelat * sinelat); 

    % Compute the component that is parallel to a line from the earth's 

   % origin to the equator at the longitude of the NED vector's origin 

     x = (erc + ealt) * coselat * cos(dlon) - (orc + oalt) * cosolat; 

    % Compute the east component of the NED vector 

     ned(2) = (erc + ealt) * coselat * sin(dlon); 

    % Compute the component that is parallel to a line from the earth's 

   % center to the north pole, with z=0 at the (olat, olon, oalt) location 

     z = ((ONEMINUSESQUARED) * erc + ealt) * sinelat - ((ONEMINUSESQUARED) *  

     orc + oalt) * sinolat; 

    % Transform x and z to produce the north and down components 

     ned(1) = cosolat * z - sinolat * x; 

     ned(3) = -sinolat * z - cosolat * x; 

%************************************************************************** 

% Given the Latitude, Longitude and Altitude in the Geodetic coordinate   *   

% system, this subroutine computes the equivalent position x, y, z        * 

% in the Geocentric coordinate system using the Helmert's formula         * 

%************************************************************************** 

function geodetic_to_geocentric; 

% Prompt for the inputs 

  lat0=input('Please enter the latitude in degree:'); 

  long0=input('Please enter the longitude in degree:'); 

  h=input('Please enter the altitude in meters:'); 

 % Conversion from degree into radians 

  lat=(pi/180.0)*lat0; 

  long=(pi/180.0)*long0; 

 % Given constant numbers 

  a=6378137.0;   % major axis----equatorial radius 

  b=6356752.314;   % minor axis----polar radius  

 % Computed variables 

  f=(a-b)/a;    %flattening 

  e=sqrt(f*(2.0-f));   % eccentricity 

  v=a/sqrt(1.0-e^2*sin(lat)*sin(lat)); 

  x=(v+h)*cos(lat)*cos(long); 

  y=(v+h)*cos(lat)*sin(long); 

  z=(v*(1-e^2)+h)*sin(lat); 

  fprintf(1,'%5.10f    %5.10f    %5.10f\n',x,y,z); 
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%************************************************************************** 

% This SSC Library function computes the NED vector from the ANS location * 

% to the target location.                                                 * 

%************************************************************************** 

   function w=NED_Position(lat_t1,long_t1,alt_t,lat_a1,long_a1,alt_a); 

 % Inputs: lat, long in degree and alt in meters 

% Target position(lat_t, long_t, alt_t) 

% ANS position(lat_a, long_a, alt_a) 

% Output 

% w = 3x1 NED vector  

  lat_t=(pi/180.0)*lat_t1; 

  long_t=(pi/180.0)*long_t1; 

  lat_a=(pi/180.0)*lat_a1; 

  long_a=(pi/180.0)*long_a1; 

   re=6378137.0; 

  e=0.006694380; 

   rc_t=re/sqrt(1.0-e*e*sin(lat_t)*sin(lat_t)); 

  rc_a=re/sqrt(1.0-e*e*sin(lat_a)*sin(lat_a)); 

 % Coordinates of the corresponding vector in node 10 

  x_10=(rc_t+alt_t)*cos(lat_t)*cos(long_t-long_a)-(rc_a+alt_a)*cos(lat_a); 

  y_10=(rc_t+alt_t)*cos(lat_t)*sin(long_t-long_a); 

  z_10=((1.0-e*e)*rc_t+alt_t)*sin(lat_t)-((1.0-e*e)*rc_a+alt_a)*sin(lat_a); 

% w is the output 3x1 vector 

  w(1,1)=-x_10*sin(lat_a)+z_10*cos(lat_a); 

  w(2,1)=y_10; 

  w(3,1)=-x_10*cos(lat_a)-z_10*sin(lat_a); 

  return 

 

3.5.2.12 Computing Distance In ECEF  

 

A matlab function to compute the distance between two points in the ECEF coordinate frame is 

given by:  

  function distance = NEDBSE_Distance(neda1, neda2, neda3, nedb1, nedb2,   

                      nedb3) 

  
  distance = sqrt((nedb1-neda1)^2 + (nedb2-neda2)^2 + (nedb3-neda3)^2); 
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CHAPTER IV                                                                                           

SUMMARY AND CONCLUSIONS 

 

A natural question is the need of all these coordinate systems.  Why not simplifying life with only 

one universal coordinate system so that everyone gets used to it?  The answer is that nowadays several 

sensors are available and each one performing different task.  Therefore each sensor provides 

measurements with respect to a given coordinate system based on the available data so that the obtained 

information or measurement is meaningful to the user.  Furthermore things make different amount of 

sense in different coordinate systems and in different coordinate spaces.  Notice that a coordinate system 

is the frame of reference and a coordinate space is the values that are used in the coordinate system.  

Every object has its own coordinate space referred to as its local space and different coordinate spaces can 

be used to represent the same point in different ways.    

Coordinate systems are extensively used in geometry and kinematics, not only to describe the 

position of points, but also to describe the angular position of axes, planes, and rigid bodies. 

For example the ANS system provides estimates of antenna position in the ECEF coordinate 

system, vision and radar provide distance measures in a local vehicle-relative coordinate system, and 

accelerometers and gyros provide inertial measurements expressed relative to the instrument axes.  Given 

that different sensors provide measurements relative to different frames, the measurements in different 

frames are comparable only if there are convenient means to transfer the measurements between the 

coordinate systems.  For example if a target is moving north in the sensor coordinate frame, then there is 

no way to indicate its position in a global/world frame unless some coordinate transformations are used, 

because north in the sensor coordinate frame can mean south, east, west, or anything in another 

coordinate frame.  A GPS/INS performing navigation relative to a fixed tangent-plane frame of reference 

will typically be: 

• Transform acceleration and angular rate measurements to platform coordinates. 

• Compensate the platform angular rate measurements for navigation-frame rotation. 
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• Integrate the compensated platform-frame angular rates to maintain an accurate vector transformation 

from platform to navigation coordinates. 

• Transform platform-frame acceleration to tangent plane by using the angular rates. 

• Integrate the compensated tangent-plane accelerations to calculate tangent-plane velocity and 

position. 

• Make GPS measurements, transformed from ECEF to tangent-plane coordinate, to estimate and 

correct errors in the sensed and the calculated INS quantities. 

A coordinate transformation being a set of steps (conversion) of the position of a target form one 

coordinate frame to another one does not modify the position of that target.  Instead the transformation 

describes the same space such that the new coordinates of the image of the target are the same as the old 

coordinates of the initial or original target.  
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APPENDIX A                                                                                                                         

BASIC MATHEMATICS 

 

Length of a vector 

Given a vector V = (x, y, z) its length or magnitude ||V|| is given by the following formula: 

 

222 zyx||V|| ++=  

 

Dot product 

The dot product of two vectors V1 = (x1, y1, z1) and V2 = (x2, y2, z2) is a scalar d given by: 

)()()( 21212121 zzyyxxVVd •+•+•=•=  

 

It also can be given by: 

)cos(|||||||| 2121 θ••=•= VVVVd  

where θ is the angle between the two vectors V1 and V2. 

 

Cross product 

The dot product of two vectors V1 = (x1, y1, z1) and V2 = (x2, y2, z2) is a vector V given by: 

),,( 12212112122121 yxyxzxzxzyzyVVV •−••−••−•=×=                      

It also can be given by: 

)sin(|||||||| 2121 θ••=×= VVVVV                                                  

where θ is the angle between the two vectors V1 and V2. 

 

Rotation matrix about the x-axis 

The rotation matrix of an angle θ about the x-axis is given by: 
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Rotation matrix about the y-axis 

The rotation matrix of an angle θ about the y-axis is given by: 

 

 

 

 

 

 

 

Rotation matrix about the z-axis 

The rotation matrix of an angle θ about the z-axis is given by: 

 

 

 

 

 

 

 

 

Matrix ×××× Vector 
 

The product of a 3 3 matrix  A and a vector 3 1 Vin = (xin, yin, zin) is a 3 1 vector Vout 

given by: 

 
 

 

 V = (xout, yout, zout)  where 

 xout = (a00 × xin) + (a01 × yin) + (a02 × zin)  

 yout = (a10 × xin) + (a11 × yin) + (a12 × zin) 

 zout = (a20 × xin) + (a21 × yin) + (a22 × zin) 
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Matrix ×××× Matrix 
 

The product of a 3 3 matrix A by another 3 matrix B is a 3  matrix C given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

with 

 

 

 c00 = (a00 × b00) + (a01 × b10) + (a02 × b20) 

 c01 = (a00 × b01) + (a01 × b11) + (a02 × b21)   

 c02 = (a00 × b02) + (a01 × b12) + (a02 × b22) 

 c10 = (a10 × b00) + (a11 × b10) + (a12 × b20) 

 c11 = (a10 × b01) + (a11 × b11) + (a12 × b21)   

 c12 = (a10 × b02) + (a11 × b12) + (a12 × b22) 

 c20 = (a20 × b00) + (a21 × b10) + (a22 × b20) 

 c21 = (a20 × b01) + (a21 × b11) + (a22 × b21)   

 c22 = (a20 × b02) + (a21 × b12) + (a22 × b22) 

  

  

 

Matrix Inverse  

 

The inverse of a 3  matrix A is a 3  matrix B given by the formulas below: 
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det = a00 (a11 a22 – a21 a12) + a01 (a12 a20 – a10 a22) + a02 (a10 a21 – a11 a20) 

b00 = (a11 a22 – a21 a12) / det 

b10 = (a12 a20 – a10 a22) / det 

b20 = (a10 a21 – a11 a20) / det 

b01 = (a02 a21 – a01 a22) / det 

b11 = (a00 a22 – a02 a20) / det 

b21 = (a01 a20 – a00 a21) / det 

b02 = (a01 a12 – a02 a11) / det 

b12 = (a02 a10 – a00 a12) / det 

b22 = (a00 a11 – a01 a10) / det 

 

 

With the matrix B given below: 

 

 

 

 

 

 

 

 

 

if the determinant is not zero.  Otherwise the matrix A is called a singular matrix. 
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