
The Extrusion of Software Components
 to Develop

 Mobile Internet Software Applications

By

Steve Clemons

A MASTER OF ENGINEERING REPORT

Submitted to the College of Engineering at
Texas Tech University in

Partial Fulfillment of
The Requirements for the

Degree of

MASTER OF ENGINEERING

Approved

--
Dr. J. Smith

--
Dr. A. Ertas

--
Dr. T. T. Maxwell

--
Dr. M. M. Tanik

June 29, 2001

 i

ACKNOWLEDGEMENTS

I would like to extend a sincere thank you to Dr. Artila Ertas and each of the professors and

instructors within the IDEATE program, for sharing their invaluable knowledge with each of

use during the past year. I wish their program continued success in the future.

My gratitude also goes to Raytheon Garland, for hosting a program so important to the ad-

vancement of the design and integration of software and hardware systems.

Additional thanks goes out to the members of the Tcl newsgroup (comp.lang.tcl), who have

provided me a wealth of information, not only for the purpose of this report, but over the last

2 years that I have spent as a Tcl programmer.

Lastly, I would like thank my family, including my wife Malia, daughter Kiana, and son Makai,

for their unconditional love and support, and their selflessness and sacrifice during my studies.

 ii

TABLE OF CONTENTS

Page
List of Figures.. VII
List of Tables... VII
I INTRODUCTION...1

1.1 Introductory Remarks..1
II HISTORY OF WIRELESS...3

2.1 Origins of Wireless Networks...3
III The Mobile Internet..5

3.1 Arrival of the Mobile Internet ..5
3.2 Mobile Internet Development..6
3.3 Mobile Content and Applications...7
3.4 Mobile Network Technologies ...9
3.5 Mobile Internet Platforms..11
3.6 Access Technologies, Standards and Terminals.....................................12
3.7 Mobile Internet Industry Structure and Strategies.................................13
3.8 Device Limitations of the Mobile Internet..14
3.9 Trends In Processing And Costs..14

IV MEMORY...15
4.1 The Role Of Memory In The Computer..15

4.1.1 The Difference Between Memory And Storage..15
4.1.2 Memory And Performance ..16

4.2 Bits And Bytes...16
4.3 CPU And Memory Requirements...17
4.4 Mobile Memory Management ..17

4.4.1 Memory Strategies ...18
4.4.1.1 Desktop PC................................18
4.4.1.2 Palm OS ...18
4.4.1.3 Basic Mobile Phone ..19

4.4.2 Software Consumption of Memory..19
4.4.2.1 Memory Management Within A Program..20

V software Modularization...24
5.1 Definition of Software Modularization...24
5.2 Definition of a Module................................24

5.2.1 Module Attributes................................25
VI SOFTWARE EXTRUSION..26

6.1 Definition of Software Extrusion...26
6.2 Goals of Software Extrusion................................26
6.3 Identifying Top Memory Consumers..26
6.4 Definition of a Software Component ...27
6.5 Purpose of Software Components................................27
6.6 Basis For Software Extrusion: Software Architecture...........................29

6.6.1 Implications of Software Architecture ..29
6.6.1.1 Architecture Defines Components..29

 iii

6.6.1.2 Systems Can Be Comprised of More Than One Structure29
6.6.1.3 Every Software System Has An Architecture ...30
6.6.1.4 The Behavior Of Each Component Is Part Of The Architecture30

6.6.2 Small Memory Software Architecture...30
6.7 Applying Extrusion to Software Components31

VII application of software EXTRUSION...32
7.1 Languages Applying Extrusion...32

7.1.1 XHTML..32
7.1.1.1 XHTML Basic ..33
7.1.1.2 Modularizing XHTML................................35
7.1.1.3 Extrusion of XHTML...36

7.1.2 Compact HTML..38
7.1.2.1 Design Principles................................39
7.1.2.2 Extrusion of Compact HTML...39

7.1.3 Java 2 Micro Edition (J2ME) ...40
7.1.3.1 Overview..40
7.1.3.2 J2ME Architecture..42
7.1.3.3 Extruding the Java Virtual Machine: Introduction to KVM......................43
7.1.3.4 Extruding KVM..44
7.1.3.5 Configurations ..51
7.1.3.6 Mobile Information Device Profile (MIDP)52
7.1.3.7 MIDP Applications...53
7.1.3.8 Memory Savings...54

7.1.4 Oracle Lite ..54
7.1.4.1 Oracle Lite SQL..55
7.1.4.2 Oracle Lite Memory Savings ...56

7.1.5 Tools to Aid Extrusion................................56
7.1.5.1 CC/PP...56

VIII application of EXTRUSION to tcl...61
8.1 What Is TCL? ..61

8.1.1 The Tk Widget ..61
8.2 Tcl and the Web ..62

8.2.1 Client-Side Tcl Applications...63
8.2.1.1 Tcl Plug-In ...63

8.3 Tcl And Integration ...64
8.3.1 Drivers For Integration Applications..64

8.3.1.1 Online Information Management................................65
8.3.1.2 Networked Control Of Devices ..65
8.3.1.3 Network Aggregation..65
8.3.1.4 Component Frameworks And Protocols...66

8.3.2 Why Traditional Programming Approaches Don't Work66
8.3.3 The Power Of Tcl ...67

8.4 Tcl Architecture...68
8.4.1 Interpreters..68
8.4.2 Data Types..69

8.4.2.1 Commands...69
8.4.2.2 Expressions................................70
8.4.2.3 Lists..70

 iv

8.4.3 Tcl Memory Usage ..70
8.4.3.1 Kernel Size ...71
8.4.3.2 Byte Alignment...71
8.4.3.3 Data Type Size..72
8.4.3.4 Benchmark Tests................................73

8.5 Extrusion of Tcl/Tk..80
8.5.1 Tiny Tcl...80
8.5.2 Palm Tcl..81
8.5.3 Tk ...81

8.5.3.1 Extruding Tk ..82
IX RESULTS and discussions..87

9.1 The Results..87
9.2 Discussion...87

X conclusions and recommendations ...89
10.1 A Return To Simpler Days...89

APPENDIX A XHTML Standard TAGS vs xHTML Basic Tags...................91
APPENDIX B Compact HTML Tag List ..100
APPENDIX C Tcl calculator source code ..104
APPENDIX D TK_WINDOW STRUCTURE...107
APPENDIX E GLOSSARY...110
References...113

 v

ABSTRACT

The use of the Mobile Internet continues to remain low among Internet users. One major

reason is the lack of content in mobile software applications. Small bandwidth, weak CPUs,

and low memory availability has prevented Mobile users from enjoying the same programs that

they find on their home or work PCs.

While the hardware industry continues to make improvements to wireless communication

networks and the mobile devices themselves, the software industry is modifying existing pro-

gramming languages to help overcome hardware restrictions imposed upon the Mobile Inter-

net.

This report explores the extrusion of attributes of software components to improve perform-

ance when used in conjunction with the Mobile Internet. Database, application, and scripting

languages are studied. The speed and memory usage differences over the languages’ non-

extruded applications are determined.

 vi

LIST OF FIGURES

Figure Page
Figure 1: Worldwide Mobile Subscribers by Technology 2000-200510
Figure 2: Trends in Processing and Costs..14
Figure 3: Java 2 Platform Targets..41
Figure 4: Tcl/Tk Calculator Script82

 vii

LIST OF TABLES

Table Page
Table 1. Current and Future Wireless Capabilities ...9
Table 2. Mobile Memory Resources ..17
Table 3. Program Variable Values and Sizes...19
Table 4. Extrusion of Java Classes ...47
Table 5. Object Class Methods Comparison ..51
Table 6. Oracle vs. Oracle Lite SQL Objects ...55
Table 7. Byte Alignment ...71
Table 8. Tk label and button Widget Attributes...................................83
Table 9. XHTML Standard Tags vs. XHTML Basic Tags91
Table 10. Compact HTML Tag List (Source: W3C)100

 1

INTRODUCTION

Introductory Remarks

You’re on your way to the airport to pick up your boss, but you’re running late. You called the

airline ahead of time to check the arrival gate information, gate B-32. As you near the airport,

your pager goes off. It’s a message from the airline. The gate has changed to A-6. No prob-

lem, you pull up just as your boss is leaving the baggage claim.

Passing through the mall’s main entrance, you log on to the mall’s website with your cell

phone. You send out a notice that you’re looking for the new Harry Potter novel. Two mer-

chants immediately reply that they are out of stock, a 3 rd says they have copies available, while a

fourth merchant says they have it in stock and while charge you 1 0% less than what Merchant

3 is asking.

Young Johnny sits quietly in his bus seat for the ride home. He downloads the newest level to

his favorite game from the developer’s website to his PDA. He installs the program and

spends the rest of the trip trying to get through the maze of creatures.

Is this somebody’s idea of the future of the Internet? No, this is the Internet, and the future is

now. The Net has gone mobile and these types of services are available or will be in the very

near future. So why isn’t everyone scraping their desktop for a Palm Pilot? There are many

reasons holding consumers back from welcoming the Mobile Internet with open arms.

There might be the infrastructure and the technologies in place, but what will attract consumer

interest and demand is going to be content and applications. It is not just any content or appli-

cations, but only those that will appeal to end-users, create value for them and meet their per-

sonalized needs. Content and applications are crucial to the take-off of Mobile Internet and it

is an area which industry players will need to get involved in directly or indirectly.

Developers are dealing with a new environment, one that has greater restrictions and limita-

tions than what has been the norm. Compared to desktop systems, the portable devices that

users will be accessing the Mobile Internet on are quite limited, especially memory. A desktop

 2

PC might typically have 128MB RAM (memory) and 20GB hard disk (storage). A portable wire-

less information device might have 16MB RAM which serves as both memory and storage.

Thus, it is inevitable that end-users will occasionally run out of memory, or storage. Memory

allocations, or disk writes, will fail. Creating the content and applications for the Mobile Inter-

net require s a different set of tools than for the wired Internet.

The tools available to programmers involve minimizing memory usage. Some of these include

program architecture, secondary storage, compression, the use of small data structures, and

careful memory allocation.

Others have taken a different route to memory management. They have started to take exist-

ing programming languages and have stripped them of unneeded components to match their

targeted platform. Like a pasta company pushing a batch of dough through an extruder, strip-

ping away unwanted dough and coming out with perfect angel hair pasta, software compo-

nents are being extruded to limit their memory usage.

 3

HISTORY OF WIRELESS

Origins of Wireless Networks.

Wireless networks and software modularization are nothing new. The humble beginning of

wireless services goes back to the 19th century, a time when Guglielmo Marconi, "the father of

radio" made his mark in the world of wireless technology.

When Marconi started experimenting with radio waves (Hertzian Waves) in 1894, his objective

was to produce and detect radio waves over long distances. In 1896, Marconi was successful

and obtained a patent and established the Wireless Telegraph and Signal Company Limited,

the first radio factory in the world. In 1901, signals were received across the Atlantic and in

1905 the first wireless distress signal was sent using Morse Code.

Wireless technology eventually progressed as an invaluable tool used by the U.S. Military. The

Military configured wireless signals to transmit data over a medium that had complex encryp-

tion, which makes unauthorized access to network traffic almost impossible. This type of

technology was first introduced during World War II when the Army began sending battle

plans over enemy lines and when Navy ships instructed their fleets from shore to shore.

Wireless proved so valuable as a secure communications medium many businesses and schools

thought it could expand their computing arena by expanding their wired local area networks

(LAN) using wireless LANs. The first wireless LAN came together in 1971 when networking

technologies met radio communications at the University of Hawaii as a research project called

ALOHNET. The bi-directional star topology of the system included seven computers de-

ployed over four islands to communicate with the central computer on the Oahu Island with-

out using phone lines. And so, wireless technology, as we know it, began its journey into every

house, classroom, and business around the world.

In 1987, the FCC allowed and encouraged cellular service providers to use alternate technolo-

gies in the 800MHz spectrum of radio frequencies. One goal was to employ digital transmis-

sions, a feat already accomplished by the Europeans. The first digital standard tested in the US

was Time Division Multiple Access (TDMA), and by 1996 three digital standards were being

 4

used by a variety of carriers in North America. TDMA is used by AT&T Wireless, and South-

western Bell. CDMA, or Code Division Multiple Access, is used by Sprint PCS, GTE, Air

Touch, and Bell Atlantic. GSM, or Global System for Mobile Communications, is used by Pa-

cific Bell and Omnipoint. The three systems differ in the way that they process voice signals

and encode information, but to the end user they sound virtually identical.

In 1994, the FCC also opened up a spectrum of radio frequencies for Personal Communica-

tion Services (PCS) operating at 1900MHz. Unlike cellular services operating at 800MHz that

often included both the analog AMPS technology and digital TDMA, CDMA, or GSM, the

PCS spectrum was entirely digital. Once the 800MHz and 1900MHz spectrums were estab-

lished and the various digital systems were in place, advanced features such as voice mail, fax

capability, paging, and SMS (Short Messaging Service) became available to cellular users. Also,

cell phones could be used as wireless modems for Internet connection from a laptop while on

the go. These advanced services and capabilities paved the road for the eventual direct connec-

tion between the wireless world and the World Wide Web.

Probably the most important factor in the birth of mobile Internet has been the proliferation

of digital cell phones in the last few years. The expanding network of digital cellular and

personal communication services (PCS) has created a solid foundation for mobile Internet ser-

vices. It is estimated that there are more than 50 million Web-enabled cell phones in use. In

1997, Nokia, Motorola, Ericsson and Phone.com came together to create the WAP because

they believed that a universal standard is critical to the successful implementation of mobile

Internet. Since then, more than 350 companies have joined them in the WAP Forum.

Making a Web site accessible through a mobile device is quite a challenge. So far, only a small

portion of the more than a billion Web sites, about 1.5 million, provide any mobile Internet

content. As the use of WAP-enabled devices grows, you can expect that many more Web sites

will be interested in creating mobile content.

 5

The Mobile Internet

Arrival of the Mobile Internet

After several years of predicting the emergence of the Mobile Internet, this market is finally

upon us. Built upon the economic success and broad user base of both the Internet and the

mobile communications market, the mobile data and Internet market is expected to be even

more dynamic, pervasive and evolutionary. There is now a range of related technologies and

platforms to support the successful implementation and management of Mobile Internet ser-

vices. But that alone is not sufficient to create mass demand. More importantly, there is now a

broad and massive base of attractive and relevant content and applications to support, shape

and grow this new market.

In the area of standards and infrastructure, there is now a stable set of network technologies,

protocols access standards and terminals upon which the Mobile Internet market could build

upon. Much of the current mobile network technologies and infrastructure are being leveraged

to support mobile data and Internet services. Looking ahead, there is also the progression to-

wards packet data and high bandwidth 3G networks, allowing for the provision of even more

bandwidth intensive and interactive services. The much awaited WAP protocol has been in-

troduced, providing a stable and common environment to base and develop the Mobile Inter-

net. Equipment manufacturers have infrastructure equipment in place, as well as an ever in-

creasing range of WAP-enabled terminals to present information to the user in different ways

dependent upon their needs and applications.

The explosive content and applications market has created the most interest and rightly so.

There might be the infrastructure and the technologies in place, but what will attract consumer

interest and demand is going to be content and applications. It is not just any content or appli-

cations, but only those that will appeal to end-users, create value for them and meet their per-

sonalized needs. Content and applications are crucial to the take-off of Mobile Internet and it

is an area which industry players will need to get involved in directly or indirectly.

The Mobile Internet market has undergone tremendous changes in the pa st year. The structure

of the industry has found it necessary to evolve and adapt in order to meet the opportunities

 6

and challenges brought about by market changes. Industry players are pushed to expand be-

yond their traditional market segments to maintain their current revenue streams and generate

new ones. The increasingly complex and competitive market has made it necessary for players

along the new value chain to form alliances to maximize synergies and economies of scale and

reduce risk and service deployment time. To survive and thrive in this new market space, play-

ers have to review their position along the value chain and strategies accordingly.

Mobile Internet Development

The market for wireless data usage and growth will be leveraging on the mass market base of

both the Internet and mobile service markets. The Internet market is reaching its growth ma-

turity stage and though the growth rate has slowed compared to past years, the number of new

users being added is still very substantial, especially in the Asia Pacific region. The US is still

the leader in Internet users and that is expected to continue till around 2003 when its penetra-

tion will be close to saturation and it will be surpassed by Western Europe.

The mobile market is enjoying strong growth across all markets with Western Europe in the

lead, making up 35% of total mobile subscribers. In 2003, Asia Pacific is expected to overtake

Western Europe as the biggest mobile market, mainly boosted by the buoyant growth of the

Chinese mobile market.

The pace of development in the area of fixed Internet varies from region to region and the

same applies to that for wireless data and Internet. This difference in the rate of development

can be attributed to factors such as size of population, regulatory and business environment,

technology adoption, social and cultural norms. Most wireless data users will be accessing data

services from handsets, while others will be a ccessing through PDAs, laptops and other mobile

devices.

Currently, the US has the highest penetration for the Internet but one of the lowest for mobile

data. This is due to the sluggish take-up of mobile data services in the country as it is still very

much fixed Internet-based at the moment. In Western Europe where Internet penetration is

not that high but where there is a booming market for mobile services, the usage of mobile

data services such as SMS messaging thrives.

 7

In the next few years, mobile data penetration will be close to mobile user penetration in re-

gions like the US, Western Europe and Japan. It is expected then that all mobile terminals will

be

data-enabled and that subscribers will be able to seamlessly access mobile data and Internet

services. In all regions, mobile data penetration is expected to exceed Internet penetration,

supported by the larger base of mobile users as compared to PC users.

Mobile Content and Applications

As mentioned earlier, the availability of attractive and relevant content and applications will be

instrumental to the take-off and success of Mobile Internet. Key to the success and appeal of

applications will be the degree to which they can be personalized and to which they meet the

unique cha racteristics of mobile access: timeliness of data provision, accessibility away from

the home or office, and relation of information to a user’s location. The user has to see a

benefit over and above the technology itself.

There will not be a single killer application but a basic quality bundle of information services,

personalized by the user, and taking into consideration all available information about the user,

including his location. The bundle will be seen by the user as a must have, relying on addi-

tional service offerings to differentiate between operators. These applications will only require

the transmission of very small quantities of data.

Handhelds have gone beyond their initial function of replacing paper organizers. They've

graduated to support an impressive range of important business functions in an enterprise set-

ting. Common applications include: sales force automation, inventory management, inspec-

tions, field service automation, construction management, warehouse applications, public con-

struction monitoring, facilities management, local delivery management, local haul fleet truck

management, outage management, point of care applications, law enforcement, scientific data

collection, and production data capture.

Some of the most widely noted drivers in the growth of mobile computing in the workforce

are:

• The need for faster, decentralized decision making

 8

• The need to be closer to customers, prospects, and partners

• The availability of better mobile computing technology

• Mobile workers spend time working, less time commuting

• Mobile workers report less stress, greater job satisfaction

• Mobile workers make fewer healthcare/accident claims

• Using mobile workers opens up a much larger recruiting pool

• A distributed workforce can reduce travel costs

• Mobile workers decrease the need for expensive office space

• The increasingly global economy

• Increased responsiveness to customer service needs

These dynamics are driving rapid growth in the number of mobile workers. The challenge fac-

ing upwardly mobile corporations – and particularly their IT departments -- is to provide the

same level of access to corporate information to the mobile worker who typically lacks a dedi-

cated high-bandwidth network connection.

Overcoming this challenge is a pre-requisite to realizing the competitive advantages that mo-

bile computing can bring to the modern corporation.

Location based services are going to play a significant role in the mobile data. Eventually, all

mobile devices will be data-enabled and access to location and navigation services will be

seamless and invisible to the end-user.

Mobile commerce (m-Commerce) is expected to be a ma jor revenue generator. This current

lack of confidence in the prospects of m-Commerce in the short term can be attributed to the

lackluster performance of the WAP platform and the voice-centric networks now in terms of

speed and capability, resulting in m-Commerce being a tedious affair rather than a conven-

ience. Secondly and more importantly, m-Commerce has inherited the payment and security

issues that have dogged online e-commerce. Most of the m-Commerce services currently in

the market are carried over the SIM Toolkit platform which has better security features than

WAP.

m-Commerce applications will mostly mirror online e-Commerce in terms of types of offer-

ings but they will be characterized by factors such easy accessibility, timeliness and location

 9

sensitivity to complement and enhance the mobility factor. Providers will need to leverage and

optimize these characteristics in creating and promoting their m-Commerce applications in

order to attract customers and differentiate themselves. However, differentiation will be short-

lived as providers will build up more or less the same array of m-Commerce applications. In

order to maintain an edge, providers will have to continually look at ways to widen and deepen

their scope of m-Commerce offerings and facilitate easy accessibility and payment systems.

Tie-ups with banks and credit card companies are becoming crucial as they will serve to lessen

the complexity and payment and security issues involved in m-Commerce transactions.

Mobile Network Technologies

Developments are in place for the advancement of each of the major network technologies to

support higher bandwidth data providing a full evolutionary path from messaging services (e.g.

SMS) through intermediate network enhancements (e.g. GPRS) through to full 3G (Third

Generation) architectures. The data system needs to be able to accommodate these changes,

which means that it should interface directly with an IP based packet network, and place no

specific requirements on the air interface.

3G is a new radio communications technology that will create a "bit pipe" for providing mo-

bile a ccess to internet-based services. It will enhance and extend mobility in many areas of our

lives.

Table 1 illustrates the current and future capabilities of mobile networks. In the near future,

mobility won't be an add-on: it will become a fundamental aspect of many services. We'll ex-

pect high-speed access to the internet, entertainment, information and electronic commerce (e-

commerce) services where ver we are - not just at our desktop computers, home PCs or televi-

sion sets.

3G services will add an invaluable mobile dimension to services that are already becoming an

integral part of modern business life: Internet and Intranet access, video-conferencing, and

interactive application sharing.

Table 1. Current and Future Wireless Capabilities (Source: Newsweek)

 10

Millions

 3G Wireless

Combines a mobile
phone, laptop PC and
TV

 2.5G Wireless

The best technology
now widely available

2G Wireless

The technology of
most current digital
mobile phones

Features includes:
- Phone calls
- Voice mail
- Receive simple email
messages

Speed: 10kb/sec
Time to download a
3min MP3 song:
31-41 min

Features includes:
- Phone calls/fax
- Voice mail
-Send/receive large
email messages
- Web browsings
- Navigation/maps
- New updates

Speed: 64-144kb/sec
Time to download a
3min MP3 song:
6-9min

Features includes:
- Phone calls/fax
- Glbal roaming
- Send/receive large
email messages
- High-speed Web
Navigation/maps
Videoconferencing
- TV streaming
- Electronic agenda
meeting reminder.

Speed: 144kb/sec-
2mb/sec
Time to download a
3min MP3 song:
11sec-1.5min

Mobile Internet based data does not require large amounts of traffic to be communicated for

the majority of users. A minority will make use of Internet browsing and intranet access over

high bandwidth bearers. The introduction of a 3G network is definitely not a prerequisite for

the introduction of valuable data services. The principal success sector for 3G is for Internet

and intranet access. Figure 1: below illustrates the forecasts for worldwide mobile subscribers

by technology.

Figure 1: Worldwide Mobile Subscribers by Technology 2000-2005 (Source: ARC Group)

0

200

400

600

800

1000

1200

1400

1600

1800

2000 2001 2002 2003 2004 2005

Analogue
Digital

3G

GPRS

 11

Regardless of mobile network bandwidth capabilities, the devices that content are going to be

delivered to still lack the processing speed and memory capabilities to run the high-end appli-

cations that users will demand.

Mobile Internet Platforms

Equipment needs to be deployed by the network operator to overcome problems such as lim-

ited capabilities within the client terminal, low bandwidths, high latency of mobile networks,

noise, and call dropout associated with wireless networks. These problems are typically elimi-

nated through data compression and the intelligent handling and prevention of dropped calls

by a proxy server, many of which will reformat and filter data according to the characteristics

of the user’s terminal. An environment for the management of data via a proxy to the terminal

is specified within the WAP standards (the Wireless Application Environment).

Middleware is an intermediate software architecture that translates web content to match the

delivery medium and the terminal characteristics. Software agents which can automate some of

the user’s tasks and simplify their actions to find the information they want will be critical in

enabling the personalization of services. These software applications will be located in the

terminal, the operator’s infrastructure system, and on the Internet.

At the stage where standards were not available to define a suitable protocol for the communi-

cation of Internet content to a mobile client proprietary standards had to be developed. These

include Phone.com’s Handheld Device Markup Language (HDML) and Access Technology of

Japan’s Compact HTML (C-HTML). The Wireless Application Protocol (WAP) markup lan-

guage, WML has now come into the market with strong global backing. WML is expected to

be the dominant delivery protocol in the short term but is likely to be superseded by XML,

which works both for the fixed and Mobile Internet.

The introduction of small footprint versions of Java: Personal Java, Embedded Java, and

JavaCard, will enable the integration of software control to handsets. It will be possible to up-

date applications on a smart card, or within the terminal, over the air. Applets can also be in-

corporated into web content to interact with the phone, or the network. The WAP standard

includes Java like elements, in their WMLScript language which can be embedded in WML

pages.

 12

Access Technologies, Standards and Terminals

In the short to medium term, the access and terminal market for the provision of Mobile

Internet services will be very much defined and driven by the Wireless Application Protocol

(WAP). WAP is a global and open communications protocol and application environment

that empowers mobile users to gain access easily and interact with information and services

utilizing their mobile devices. It is designed to be used by most handheld devices ranging from

pagers, phones to communicators and to work over most wireless networks such as GSM,

CDMA and TDMA. It can also be built on any operating system in the market today, such as

Palm OS, EPOC and Windows CE.

Terminals that might be used for mobile access to Internet based services vary widely in their

capabilities. The elements that will have the greatest influence on the formatting of data are

the display, memory, processor speed, and user interface. Terminals that will be used range

from a basic phone, to a full color VGA display notebook computer. The applications will

often be the same though optimzed use will depend on the capability and characteristics of

individual terminals.

The present terminal market can be segmented into three markets. The first of these is phones

which are segmented by the value and capabilities of the phones. The second market is for or-

ganizers and includes PDAs (no keyboard, portrait screen), and handheld PCs (keyboard, land-

scape screen). The third market is for portable computers including notebook, small note-

book, and ultralight notebooks.

These categories will change as the difference between products becomes blurred. At the low-

est level there will be the entry level phone, which has a budget price and very limited push

information service support. The next level is the value added service mobile (VAS mobile)

with a larger display and the ability to support WAP applications and secure e-Commerce.

The communicator will become a product category in its own right though it will encompass

the PDA whose functionality will become increasingly communications biased, but with a large

screen and powerful processor. Finally the handheld PC will become increasingly powerful

and will grow to have much of the functionality of today’s notebook computers though in a

much smaller form factor.

 13

The introduction of Bluetooth’s local wireless links between mobile and fixed products will

add a new degree of flexibility to the use of mobile data. Devices can make use of personal

information stored on other local devices, no wires are needed between computer and mobile

phone for data access, and devices can synchronize personal information automatically.

Mobile Internet Industry Structure and Strategies

The structure of the traditional telecoms industry has undergone significant changes with the

convergence of industry segments, brought about by the consolidation and expansion of play-

ers’ roles in line with technological and service evolution. The industry structural evolution

looks set to reach greater heights and complexity with the emergence of Internet services de-

livered over mobile platforms, powered by the growth dynamics of both the Internet and mo-

bile sectors and the market opportunities that they generate.

The emerging Mobile Internet market has brought with it opportunities derived from the mo-

bility of the platform and the varied content and services mirroring and enhancing that of the

highly successful fixed Internet. The challenges facing market players are how maximize value

and revenue generation from the evolving industry chain and how to remain relevant to the

consumers and retain their loyalty, in a cost and time efficient manner. Attributes such as

competitive advantage and differentiation have become even more crucial. The resultant mar-

ket scenario is one where market players are pushed to extend their involvement beyond their

traditional service segments and involve themselves in other segments along the industry value

chain through acquisitions and partnerships. These movements are done with a view to estab-

lish a synergistic and complementary relationship to enhance competitive advantages.

The market evolution brought about by Mobile Internet has altered the position of the net-

work operator in the value chain. Up till now, the operator has been able to rely upon per

minute/second billing of voice traffic for revenue. The introduction of data requires a change

to this model. Data traffic will not generate large amounts of traffic in the network, though

there are opportunities for induced services where the data service provides an alert for further

information that is accessible by calling into a voice message server. Data services will initially

provide for operator differentiation though retention of these customers will develop to rely

upon personalization of services, and a battle for customer ownership.

 14

Device Limitations of the Mobile Internet

To discuss limitations, the scope of target small information appliances must first be described.

The categories of these devices are often referred to as smart phones, smart communicators,

and mobile PDAs. There are some hardware restrictions for these devices. Although low

bandwidth is a major limitation of the Mobile Internet, there are other limitations that are de-

vice specific. From the hardware point of view, developers have to applications that have:

• Small memory. Typical case: 128-512Kbytes RAM and 512K-1Mbytes ROM

• Low power CPU. Typical case: 1-10 MIPS class CPU for embedded systems

• Small display. Typical case: 50x30 dots, 100x72 dots, and 150x100 dots

• Restricted colors. Typical case: mono-color (black and white)

• Restricted character fonts. Typical case: only single font

• Restricted input method. Typical case: several control buttons and number buttons (0-

9)

Trends In Processing And Costs

Most everyone is familiar with the general trend of processing power becoming cheaper (from

mainframe to desktop computer). This trend also translates to an increased penetration rate for

end-user computing. PDAs are going to be the next big wave where because of reduced cost

and smaller form factor, an unprecedented number of end-users will have access to mobile

enterprise applications. Figure 2: illustrates then trends in processing and costs with relation to

time.

Figure 2: Trends in Processing and Costs (Source: Oracle)

 15

MEMORY

The Role Of Memory In The Computer

People in the computer industry commonly use the term "memory" to refer to RAM (Random

Access Memory). A computer uses RAM to hold temporary instructions and data needed to

complete tasks. This enables the computer's CPU (Central Processing Unit), to access instruc-

tions and data stored in memory very quickly.

A good example of this is when the CPU loads an application program - such as a word proc-

essing or page layout program - into memory, thereby allowing the application program to

work as quickly and efficiently as possible. In practical terms, having the program loaded into

memory means that you can get work done more quickly with less time spent waiting for the

computer to perform tasks.

The process begins when you enter a command from your keyboard. The CPU interprets the

command and instructs the hard drive to load the command or program into memory. Once

the data is loaded into memory, the CPU is able to access it much more quickly than if it had

to retrieve it from the hard drive.

This process of putting things the CPU needs in a place where it can get at them more quickly

is similar to placing various electronic files and documents you're using on the computer into a

single file folder or directory. By doing so, you keep all the files you need handy and avoid

searching in several places every time you need them.

The Difference Between Memory And Storage

People often confuse the terms memory and storage, especially when describing the amount

they have of each. The term memory refers to the amount of RAM installed in the computer,

whereas the term storage refers to the capacity of the computer's hard disk. To clarify this

common mix-up, it helps to compare your computer to an office that contains a desk and a

file cabinet.

 16

Consider a desk-and-file-cabinet metaphor. Imagine what it would be like if every time you

wanted to look at a document or folder you had to retrieve it from the file drawer. It would

slow you down tremendously, not to mention drive you crazy. With adequate desk space - or

memory in this case - you can lay out the documents in use and retrieve information from

them immediately, often with just a glance.

Another important difference between memory and storage is that the information stored on a

hard disk remains intact even when the computer is turned off. However, any data held in

memory is lost when the computer is turned off. In our desk space metaphor, it's as though

any files left on the desk at closing time will be thrown away.

Memory And Performance

Adding more memory to a computer system increases its performance. If there isn't enough

room in memory for all the information the CPU needs, the computer has to set up what's

known as a virtual memory file. In so doing, the CPU reserves space on the hard disk to simu-

late additional RAM. This process, referred to as "swapping", slows the system down. In an

average computer, it takes the CPU approximately 200ns (nanoseconds) to access RAM com-

pared to 12,000,000ns to access the hard drive. To put this into perspective, this is equivalent

to what's normally a 3 1/2 minute task taking 4 1/2 months to complete!

Bits And Bytes

Computers speak in a "code" called machine language, which uses only two numerals: 0 and 1.

Different combinations of 0s and 1s form what are called binary numbers. These binary num-

bers form instructions for the chips and microprocessors that drive computing devices - such

as computers, printers, hard disk drives, and so on. You may have heard the terms "bit" and

"byte." Both of these are units of information that are important to computing. The term bit is

short for "binary digit." As the name suggests, a bit represents a single digit in a binary num-

ber; a bit is the smallest unit of information used in computing and can have a value of either 1

or a 0. A byte consists of 8 bits. Almost all specifications of a computer's capabilities are repre-

sented in bytes. For example, memory capacity, data-transfer rates, and data-storage capacity

are all measured in bytes or multiples thereof (such as kilobytes, megabytes, or gigabytes).

 17

The discussion of bits and bytes becomes very relevant when it comes to computing devices

and components working together. It is important to understand specifically how bits and

bytes form the basis of measuring memory component performance and interaction with

other devices like the CPU.

CPU And Memory Requirements

 A computer's CPU processes data in 8 -bit chunks. Those chunks, as mentioned in the previ-

ous section, are commonly referred to as bytes. Because a byte is the fundamental unit of

processing, the CPU's processing power is often described in terms of the maximum number

of bytes it can process at any given time. For example, Pentium and PowerPC microprocessors

currently are 64-bit CPUs, which means they can simultaneously process 64 bits, or 8 bytes, at

a time.

Each transaction between the CPU and memory is called a bus cycle. The number of data bits

a CPU can transfer during a single bus cycle affects a computer's performance and dictates

what type of memory the computer requires. Most desktop computers today use 168-pin

DIMMs, which support 64-bit data paths. Earlier 72-pin SIMMs supported 32-bit data paths,

and were originally used with 32-bit CPUs. When 32-bit SIMMs were used with 64-bit proces-

sors, they had to be installed in pairs, with each pair of modules making up a memory bank.

The CPU communicated with the bank of memory as one logical unit.

Mobile Memory Management

Memory management starts with system design. Different OSs use different principles for

managing memory. As an application programmer, it is important to understand, and build on,

the OS’s underlying model. And the end-user’s interaction with a machine will be influenced

by its memory management strategy.

Table 2 provides a summary of the memory resources and user interaction paradigms of some

well known tethered and mobile systems:

Table 2. Mobile Memory Resources (Source: Symbian, Ltd)

Desktop PC (Win-
dows, Unix etc)

Conventional multi-tasking, variable number of tasks (processes), each with own address
space. If one task runs out of memory then a memory -allocation operation will fail, and some
recovery action is needed. Large memory, huge hard disk, virtual memory with disk-based
swap file.

 18

EPOC R5 PC-like multi-tasking. But smaller memory, and no hard disk. So programs run out of mem-
ory more frequently.

PalmOS Only one application task simultaneously, possibly a few system tasks also. System tasks
pre-allocate RAM, user task and database manager allocate RAM dynamically.

Quartz Like EPOC R5 — but there is no way for the end-user to close applications, and the file
system isn’t visible to the end-user.

Basic mobile phone Like an embedded system, each task gets a fixed RAM budget, and data is stored elsewhere
in files with fixed budget.

Windows C E 2.0 Like EPOC R5.
Pocket PC Like Quartz.

In each of these environments, it is necessary to have a strategy to manage memory. The strat-

egy must have:

• minimal impact on the user: low-memory conditions either do not arise, or have obvious

causes and consequences, or are easy to manage

• programmer-friendliness: easy to explain the high-level ideas, easy to work with at detail

level

Memory Strategies

Depending on the targeted platform, developers have different scenarios to consider when

considering memory use of their programs. It is up to the developer to understand these con-

ditions and build strategies around them.

Desktop PC

In a desktop PC, Low -memory conditions rarely arise, because of practically infinite resources.

A “close some programs” dialog is easy enough for users to understand and respond to. Pro-

grammers can get careless because allocations so rarely fail. Consequences for end-users are

bad when things do get tight: try setting your swap file to 1MB and playing on your PC: it’s not

pretty.

Palm OS

On the Palm, only a single application can be active at one time, and applications are struc-

tured as databases with multiple entries. A failure in the foreground application is easy enough

to deal with: it causes at most one entry to be lost. Failure in background is impossible, be-

cause applications save data and terminate when sent to background. The negative impact of

this is that task switching is slow.

 19

Basic Mobile Phone

On most of the basic mobile phone models, the RAM budget for each task is fixed. By fixing

the memory allocated, an out-of-memory(OOM) should never occur. If it does, there is little

in the way to recover from it. Efficient programming is used to avoid OOM. Basic mobile

phones are normally closed to third-party software, since this would break RAM budgets..

Software Consumption of Memory

The fundamental object in all high-level programming languages is a variable. A variable repre-

sents a memory address in RAM that the program reserves for program use. Each variable

type occupies an amount of space and is capable of storing a specified range of values. The

size of the variable and what values it can store is language dependent. Table 3 illustrates some

of these values.

Table 3. Program Variable Values and Sizes (Source: S. Clemons)

Type C Size C Values C++
Size

C++ Values Java
Size

Java Values

boolean N/A N/A N/A N/A 1 bit 0 or 1

byte N/A N/A N/A N/A 8 bit -128 to 127
char 8 bit -127 - +127 8 bit -127 - +127 16 bits Unicode

short 16 bits -32767 to 32767 N/A N/A 16 bits -32767 to 32767

int 16 bits -32767 to 32767 16 bits -32767 to 32767 32 bits -2147483647 to
2147483647

long 32 bits -2147483647 to
2147483647

N/A N/A 64 bits 2.2*10 -̂308 to
1.8*10^308

float 32 bits -2147483647 to
2147483647

32 bits -2147483647 to
2147483647

32 bits -2147483647 to
2147483647

double 64 bits 2.2*10^-308 to
1.8*10^308

64 bits 2.2*10^-308 to
1.8*10^308

64 bits 2.2*10 -̂308 to
1.8*10^308

long double 64 bits 2.2*10^-308 to
1.8*10^308

N/A N/A N/A N/A

void N/A N/A 0 0 N/A N/A

 20

Considering that structures, classes, and components are made up of any number of these

variables, or even other structures, classes, or components, it’s easy to see how large a pro-

gram’s memory requirements can become.

Memory Management Within A Program

A program starts with an amount of memory allocated for use by it. The program will use this

memory in two ways:

• through procedure calls

• through dynamic data types

When a procedure is called, information about the call is placed on the user stack. Space for

local variables is also allocated on the user stack. This is organized as a stack which grows

when a procedure is called and shrinks when a procedure exits.

When dynamic memory is required it is taken from the ``heap''. Operations on the heap in-

clude

• get memory from heap

• release memory to heap

• exchange memory for a different bit

The heap will consist of space, some of which is in use and some of which is free.

This is just one example of the general memory management problem, whether it is memory

managed by a program, memory managed by the O/S (which is a program), disk space, etc.

One method of keeping track is by a bitmap. More common is by linked list. There may be

one linked list containing both used and free memory.

Methods For Retrieving Memory

When a request is made for a piece of memory, it can be taken from the free list in a number

of ways. First fit, best fit, worst fit, returning memory, and the buddy system are all methods

for retrieving memory.

 21

FIRST FIT
This finds the first hole in the list big enough for the request. This is fast to do in an address

sorted list, because it just traverses the list until it finds a large enough one.

BEST FIT
This finds the smallest hole in the list big enough for the request. Surprisingly, best fit is not

always the best method, because it results in lots of tiny leftover pieces that are not large

enough to be used. This is fast to do in a size sorted list.

WORST FIT
This finds the largest hole in the list. This is fast in a size sorted list, if the largest is first. This is

not so good either.

RETURNING MEMORY
When a piece of memory is returned to the free list, it is not just added to the list - if there is

already memory on this list either side of it then the pieces should be coalesced into one. This

is easy to do in an address sorted list.

BUDDY SYSTEM
This uses a trick on the way numbers are stored - in binary. In this system, memory is only a l-

located in units that are powers of two. So if 3 bytes are requested you get 4, and if 129 bytes

are requested you get 256. This does lead to wasted space (internal fragmentation).

A list of lists of free space is maintained. The first list is the 1 byte blocks, the second the 2

byte blocks, then the 4 byte blocks, etc. When a request is made, the size is rounded up and a

search made of the appropriate list. If there is something there it is allocated. If not, a search is

made of the next largest, and so on until a block is found that can be used. This search can be

done quickly.

A block that is too large is split into two. Each part is known as the ``buddy'' of the other.

When it is split, it is taken off the free list for its size. One buddy is placed on the free list for

the next size down, and the other is used, splitting it again if needed.

 22

For example, suppose a request is made for a 3 byte piece of memory and the smallest free

block is 32 bytes. It is split into two 16 byte buddies, one of which is placed on the 16 byte free

list. The other is split into two 8 byte buddies, one of which is placed on the 8 byte list. The

other is split into two 4 byte buddies, one of which is placed on the 4 byte free list, and the

other - finally - is used.

When a piece of memory is released, it is placed back on the appropriate free l ist. Here now is

the trick: two free blocks can only be combined if they are buddies, and buddies have ad-

dresses that differ only in 1 bit. Two 1 byte blocks are buddies if they differ in the last bit, two

2 byte blocks are buddies if they differ in the 2nd bit, and so on. So it is very quick to find out

if two blocks can be combined.

The advantage of the buddy system is that granting and returning memory are both fast opera-

tions. The disadvantage is internal fragmentation.

COMPACTION
Eventually, memory will become ̀ `externally fragmented''. That is, there will be lots of small

pieces of memory on the free list(s) that are too small to be useful. When a request comes in

for something larger than any of these it will fail even though there may be enough free space

in total.

To avoid this happening, memory must be compacted every now and then. This means mov-

ing all blocks down to the low end of memory to leave space at the top as one large block.

Everything that references the old memory blocks will of course now be pointing to the wrong

place. Various code relocation techniques help here.

Simple O/S memory management

The above was general memory management for any situation. Now the tasks that the operat-

ing system in particular has to do will be discussed. It has to manage processes. When a proc-

ess starts, it must allocate a chunk of memory for it to run in. When it terminates, it returns

that chunk to free space. The following sections discuss some simple schemes.

 23

NO ALLOCATION
Nothing is done by the O/S. A process has access to all memory and can do what it wants.

This is only found on very early machines. In these machines, every program had to do its own

I/O, etc, and had to reload the O/S on termination.

S INGLE USER
In this system, the O/S reserves a section for itself, and a process can access the rest. This is

the scheme used by MSDOS. Due to a lack of memory protection, a misbehaved MSDOS

program can in fact overwrite the O/S. Normally, when MSDOS loads a program it sets aside

space for it using information in the header part of an EXE file. The program then asks for

memory from MSDOS using the ALLOC_MEMORY system call and releases it back to

MSDOS using FREE_ALLLOCATED(Source: ARC Group)_MEM.

MULTIPROGRAMMING
In a multitasking system, many processes will be attempting to use the CPU and memory. It is

not possible to just run each of them to conclusion, because for an interactive program (say a

shell) this may be for many hours. In addition, while a process is waiting on an input or output

device it generally cannot do anything else and so will be idle.

One scheme is to load a number of processes into different parts of memory, and let them use

the CPU according to some scheme. The processes could be loaded using a static scheme in

which each one gets a fixed size piece of memory, and cannot get more.

With a dynamic memory scheme, processes can ask for more memory as they need it. This can

then be given if available from the free list maintained by the O/S.

In Unix, processes have their memory requirements divided up into several parts: text (pro-

gram code), stack and data areas. The data area is allowed to grow or shrink using the brk or

sbrk system calls. Within a data area the process itself manages its area using the standard C

library calls malloc, free and realloc. These calls themselves make use of brk and sbrk if they

need to change the size of the data area. This is a two-level mechanism.

 24

software Modularization

Definition of Software Modularization

The Mobile Internet brings with it a challenge to developers to provide content to a wide a s-

sortment of devices. Each of these devices has different requirements and constraints. Soft-

ware modularization is the decomposition of a giving language into a collection of abstract

modules that provide specific types of functionality. These modules may be combined with

each other and with other modules to create a subsets and extensions of the language

The modularization of a language refers to the task of specifying well-defined sets of elements

that can be combined and extended by developers to make it economically feasible to deliver

content on a greater number and diversity of platforms.

Modularizing software provides a means for product designers to specify which elements are

supported by a device using standard building blocks and standard methods for specifying

which building blocks are used. These modules serve as "points of conformance" for the con-

tent community. The content community can now target the installed base that supports a cer-

tain collection of modules, rather than worry about the installed base that supports this or that

permutation of the language. The use of standards is critical for modularized software to be

successful on a large scale. It is not economically feasible for content developers to tailor con-

tent to each and every permutation of a languages elements. By specifying a standard, either

software processes can autonomously tailor content to a device, or the device can automati-

cally load the software required to process a module.

Definition of a Module

A module is a collection of objects that are logically related. Those objects may include con-

stants, data types, variables, and program units (e.g., functions, procedures, etc.). Note that ob-

jects in a module need not be physically related. For example, it is quite possible to construct a

module using several different source files. Likewise, it is quite possible to have several differ-

ent modules in the same source file. However, the best modules are physically related as well as

logically related; that is, all the objects associated with a module exist in a single source file (or

directory if the source file would be too large) and nothing else is present.

 25

Modules contain several different objects including constants, types, variables, and program

units (routines). Modules shares many of the attributes with routines; this is not surprising

since routines are the major component of a typical module. However, modules have some

additional attributes of their own. The following sections describe the attributes of a well-

written module.

Module Attributes

A module is a generic term that describes a set of program related objects (routines as well as

data and type objects) that are somehow coupled. Modules should be defined by its actions

rather than by source code syntax. Good modules share many of the same attributes as good

routines as well as the ability to hide certain details from code outside the module.

Good modules exhibit strong cohesion. That is, a module should offer a (small) group of ser-

vices that are logically related. For example, a "printer" module might provide all the services

one would expect from a printer. The individual routines within the module would provide the

individual services.

Good modules exhibit loose coupling. That is, there are only a few, well-defined (visible) inter-

faces between the module and the outside world. Most data is private, accessible only through

accessor functions. Furthermore, the interface should be flexible.

Good modules exhibit information hiding. Code outside the module should only have access

to the module through a small set of public routines. All data should be private to that module.

 26

SOFTWARE EXTRUSION

Definition of Software Extrusion

Extrusion is a term usually associated with mechanical engineering. It involves the shaping of

a material. Normally, a material is pushed through a two-dimensional opening, varying in form.

Remember that thing you stuck Play-Doh in and pushed the lever down and it squeezed out in

the shape that you stuck over where the stuff comes out? Same thing.

Webster’s Dictionary defines extrusion as:

1. forcing, pressing, or pushing out; or

2. shaping (as metal or plastic) by forcing through a die

The first and only reference I’ve found referring to extrusion of software was in a 1992 soft-

ware review by Jeff Alger on Component Workshop and OODLs. Jeff wrote:

“Component Workshop has a feature called extrusion that, again on paper, does much bet-

ter. Their claim is that a minimal app like a simple text editor should be about 150K. Now

we're talking. Extrusion involves stripping unneeded stuff like the compiler and only spit-

ting out the essential code needed to actually run the application.”

Goals of Software Extrusion

The primary design goal for extrusion is to is minimize the static memory footprint and the

runtime memory usage of an application. The static memory footprint is comprised of mostly

ROM, but also some RAM. It is the memory which is used when application environment

classes are preloaded. The runtime memory usage, as the term suggests, is the memory which

is consumed at runtime by the dynamically loaded classes, stacks, and heap storage to support

dynamic allocation. The end result should be a system with drastically reduced ROM and RAM

requirements which has no perceivable degradation in execution speed.

Identifying Top Memory Consumers

During the running of an application, there are some categories that consume more memory

than others. These top memory consumer are targeted for potential for memory usage reduc-

tion. These include:

 27

• The memory footprint of classes and their various components

• Preloaded (mostly ROM use)

• Dynamically loaded

• Stacks

• Heap usage

• Code size

Software extrusion deals with both reducing the memory footprint of classes and other com-

ponents, and reducing overall code size.

Definition of a Software Component

Before we discuss extrusion of software components any further, it is important to provide a

definition of a component. There are many differing definitions of a software component.

The software industry has yet to standardize one definition. For the purpose of this report, a

software component will be defined as:

“A component is an identifiable piece of software that describes and/or delivers a set of meaningful ser-

vices that are only used via well-defined interfaces.”

Purpose of Software Components

Software components enable practical reuse of software “parts” over multiple applications. An

example of a component would be a button in a Java application. Some of the attributes of

the button may change from one application to another, such as the label or the command it

executes, but the code that creates a button for one application can be reused to create a but-

ton for another application, without the programmer having to rewrite the code. There are

other units of reuse, such as source code libraries, designs, or architectures. Therefore, to be

more specific, software components are binary units of independent production, acquisition,

and deployment that interact to form a functioning system.

Software components should always exhibit the following essential characteristics:

• Identifiable – Components should have a clear individual identity.

• Traceable – Components should retain their identity and be traceable once they have been

consumed into another component or application, enabling their replacement

 28

• Replaceable – Can be replaced by a new version or another component offering the same

service or function with no impact on the consuming application. More accurately, it is the

implementation of the component that is replaceable.

• Accessed Only via Interfaces – Components are only accessed via defined interfaces, with

no dependencies on the physical implementation of the component. More specifically, Ap-

plications should only inherit the behavior offered through a specific interface, and not in-

herit the whole implementation.

• Accurately Documented Service – To enable reuse, services offered via an interface must

be accurately documented in such as way that it is possible to understand not just how to

communicate with them, but what service is provided. However, to enable reuse, it should

not be necessary to document how this is provided.

There are a number of other characteristics that may be desirable, but are optional:

• Physical Implementation is Hidden – How the service delivered by a component is actu-

ally performed should be hidden from the consumer. The interface should only say what is

offered, not how.

• Independent – Components should be independent of the implementation of other compo-

nents. If not, they are sometimes termed sub-components.

• Encapsulated – Components are encapsulated and only expose the services they provide

via their interfaces. The component forms a boundary around everything that comprises its

physical imple mentation, including sub-components.

• Can be Reused Dynamically – Components can be dynamically assembled into applica-

tions. Rapid adaptation, application assembly, and end-user consumption is made easier if

components can be called dynamically at runtime, rather than statically via a compile and

link process.

• Offer a Generic Service – They provide a generic service that can be used in unpredictable

combinations. Though opportunities for reuse are increased, they may need to be specia l-

ized before they can be used.

• Specialized Only via Designated Plug Points – Specialization of generic services should

take place via a specified extension mechanism, rather than by copying and/or changing the

physical implementation that reduces replaceability.

 29

• Certified and Authenticated – Certification and authentication techniques enable applica-

tions to ensure that the correct service is being used. This is a necessity when applications

are assembled dynamically and/or third-party services are subscribed to.

Basis For Software Extrusion: Software Architecture

Software extrusion comes from the principles of software architecture. The software architec-

ture of a program or computing system is the structure or structures of the system, which

comprise software components, the externally visible properties of those components, and the

relationships among them.

"Externally visible" properties refer to those assumptions other components can make of a

component, such as its provided services, performance characteristics, fault handling, shared

resource usage, and so on. Software architecture must abstract away some information from

the system (otherwise there is no point looking at the architecture, we are simply viewing the

entire system) and yet provide enough information to be a basis for analysis, decision making,

and hence risk reduction.

Software architecture is a set of concepts and design decisions about the structure and texture

of software that must be made prior to concurrent engineering to enable effective satisfaction

of architecturally significant explicit functional and quality requirements and implicit require-

ments of the product family, the problem, and the solution domains.

Implications of Software Architecture

Architecture Defines Components

The architecture embodies information about how the components interact with each other.

This means that architecture specifically omits content information about components that

does not pertain to their interaction.

Systems Can Be Comprised of More Than One Structure

Not only can systems be comprised of more than one structure, but no one structure holds the

irrefutable claim to being the architecture. By intention, a software architecture does not specify

what architectural components and relationships are. Is a software component an object? A

process? A library? A database? A commercial product? It can be any of these things and

more.

 30

Every Software System Has An Architecture

 Every system can be shown to be composed of components and relations among them.

The Behavior Of Each Component Is Part Of The Architecture

Each component’s behavior can be observed or discerned from the point of view of another

component. This behavior is what allows components to interact with each other, which is

clearly part of the architecture. Hence, most of the box-and-line drawings that are passed off as

architectures are in fact not architectures at all. They are simply box-and-line drawings.

 Small Memory Software Architecture

The architecture for a system with limited memory must describe policies for memory man-

agement and ensure that each component’s allocations are feasible in the context of the system

as a whole. This means that each individual component must take explicit responsibility for

managing its own memory. The design should incorporate small data structures that require

minimum memory to store the information the system needs.

Data structures that are appropriate where memory is unrestricted may be far to prodigal

where memory is limited. Techniques like compression and using secondary storage can re-

duce a program’s main memory requirements, but both have significant liabilities when used to

manage the data a program needs to work on. Many kinds of compression cannot be accessed

randomly; if random access is required, the data must be uncompressed first, costing time, and

requiring a large amount of buffer memory for the uncompressed data. Data stored on secon-

dary storage is similarly inaccessible, and needs to be copied into main memory buffers before

it can be accessed.

Data structure design states that a programmer should choose the smallest structure that sup-

ports the operation needed. For any given data set there are many different possible data

structures that might support it. First, the program’s requirements must be analyzed to deter-

mine the information the program needs to store. Second, consider the characteristics of the

data – what’s its total volume and how will it be accessed. And lastly, choose the data structure

that best meets the program’s needs.

 31

Applying Extrusion to Software Components

Extrusion of software components takes data structure design one step further. Instead of just

choosing a component that meets a need, any part of the component that is determined to be

unnecessary for a particular purpose is removed. Using the Play-Doh metaphor again, imagine

Play-Doh as a software component that performs the functions of a drop-down list. The

drop-down list component has many attributes: size, variable name, text color, background

color, mouse event handlers, and possibly many more. If you were developing an application

for a Smart Phone, you probably wouldn’t need many of the colors or mouse event handlers.

Not only are these features unsuitable for a Smart Phone, but they also take up valuable mem-

ory while providing no service to the user. So on the opening of your extruder goes the shape

of a Smart Phone. You put the drop-down list component in the extruder, push down, and

out comes a scaled down version of the component, stripped of unnecessary attributes, and

more correctly shaped for a particular role. It’s still Play-Doh, but Play-Doh that uses less

memory.

 32

application of software EXTRUSION

Languages Applying Extrusion

Although the term “extrusion” may not be used in the software development mainstream, the

philosophies that it implies are already being used by some to overcome hardware restrictions

of the Mobile Internet. Some of the languages that have had software extrusion principles

applied to create new language standards are XHTML, HTML, Java, and Oracle.

XHTML

Extensible Hyper Text Mark Up Language (XHTML 1.0) is the next version of HTML that

bridges the gap between the Web's prior easy-going days of HTML (HyperText Markup Lan-

guage) and the explosive future growth of XML (Extensible Markup Language).

XML is a set of rules allowing spreadsheets, address books, databases and other computer

applications to communicate and be understood. Although it has some of the same tags as

HTML, their meaning depends on the application XML communicates with. This combina-

tion of flexibility and strictness permits a wide range of devices and applications to exchange

information with little ambiguity.

An important aspect to remember is that XML code can be embedded within the XHTML

document with or without a DTD (document type definition). But the parser (browser) to be

able to understand embedded XML requires a DTD. In short a DTD is a document (schema)

which defines all the elements (tags) used within an XML document. Hence XML + HTML =

XHTML.

How do HTML and XML fit together? HTML is a markup language described in SGML

(Standard Generalized Markup Language). XML is a restricted form of SGML, removing

many of SGML's more complex features, but preserving most of SGML's power and com-

monly used features. XHTML is the reformulation of HTML 4.0 as an application of XML. It

is the W3C's new version of HTML. The W3C (World Wide Web Consortium) took the logi-

cal step of expressing the HTML 4.0 standard in XML instead of using the more complicated

SGML.

 33

XHTML provides three major advantages:

• Transforms HTML from a stand-alone language, into an XML version.

• Modularizes HTML

• Extends HTML elements to facilitate creation of robust interfaces.

XHTML Basic

XHTML Basic is a subset of the XHTML document type. It includes the minimal set of

modules required to be an XHTML host language document type, and in addition it includes

images, forms, basic tables, and object support. It is designed for Web clients that do not sup-

port the full set of XHTML features; for example, Web clients such as mobile phones, PDAs,

pagers, and settop boxes. XHTML Basic supports basic text, hyperlinks, basic forms, basic

tables, images, and some meta information. But since XHTML Basic is modular, you can again

add these features to it should your device support them. So if your PDA has Java support, it

might be designed to support XHTML Basic plus an XHTML Java module.

XHTML Basic is designed as a common base that may be extended. For example, an event

module that is more generic than the traditional HTML 4 event system could be added or it

could be extended by additional modules from XHTML Modularization such as the Scripting

Module. The goal of XHTML Basic is to serve as a common language supported by various

kinds of user agents.

XHTML for Small Information Appliances

HTML 4 is a powerful language for authoring Web content, but its design does not take into

consideration issues pertinent to small devices, including the implementation cost (in power,

memory, etc.) of the full feature set. Consumer devices with limited resources cannot generally

afford to implement the full feature set of HTML 4. Requiring a full-fledged computer for a c-

cess to the World Wide Web excludes a large portion of the population from consumer device

access of online information and services.

Because there are many ways to subset HTML, there are many almost identical subsets defined

by organizations and companies. Without a common base set of features, developing applica-

tions for a wide range of Web clients is difficult.

 34

The motivation for XHTML Basic is to provide an XHTML document type that can be

shared across communities (e.g. desktop, TV, and mobile phones), and that is rich enough to

be used for simple content authoring. New community-wide document types can be defined

by extending XHTML Basic in such a way that XHTML Basic documents are in the set of

valid documents of the new document type. Thus, an XHTML Basic document can be pre-

sented on the maximum number of Web clients.

Background and Requirements

Information appliances are targeted for particular uses. They support the features they need for

the functions they are designed to fulfill. The following are examples of different information

appliances:

• Mobile phones

• Televisions

• PDAs

• Vending machines

• Pagers

• Car navigation systems

• Mobile game machines

• Digital book readers

• Smart watches

The common features found in these document types include:

• Basic text (including headings, paragraphs, and lists)

• Hyperlinks and links to related documents

• Basic forms

• Basic tables

• Images

 35

• Meta information

This set of HTML features has been the starting point for the design of XHTML Basic. Since

many content developers are familiar with these HTML features, they comprise a useful host

language that may be combined with markup modules from other. For example, XHTML Ba-

sic may be extended with an event module that is more generic than the traditional HTML 4

event system or it could be extended by additional modules from XHTML Modularization,

such as the Scripting Module.

It is not the intention of XHTML Basic to limit the functionality of future languages. But since

the features in HTML 4 (frames, advanced tables, a fixed set of attribute event handlers, etc.)

were developed for a desktop computer type of client, they have proved to be inappropriate

for many non-desktop devices. XHTML Basic will be extended and built upon. Extending

XHTML from a common and basic set of features, instead of almost identical subsets or the

too-large set of functions in HTML 4, will be good for interoperability on the Web, as well as

for scalability.

Compared to the rich functionality of HTML 4, XHTML Basic may look like one step back,

but in fact, it is two steps forward for clients that do not need what is in HTML 4 and for con-

tent developers who get one XHTML subset instead of many.

Modularizing XHTML

XHTML has been divided into modules, so implementers can choose which group of tags

their particular application will support while still maintaining compliance. For example, a

PalmPilot browser can safely ignore frames and forms and still be considered a standards-

complaint browser. Thus making content management much easier for different devices.

XHTML consists of 4 core modules. These core modules are modules that are required to be

present in any XHTML Family Conforming Document Type.

• Structural Module

• Text Module

• Hypertext Module

• List Module

 36

Other modules that comprise XHTML are:

• Applet Module

• Base Module

• Basic Forms Module

• Basic Tables Module

• Bi-Directional Text Module

• Client-Side image Map Module

• Edit Module

• Forms Module

• Hypertext Module

• Frame Module

• Image Module

• Intrinsic Events Module

• Legacy Module

• Link Module

• List Module

• Meta information Module

• Name Module

• Object Module

• Presentation Module

• Scripting Module

• Server-Side image Map Module

• Structure Module

• Style Attribute Module

• Style Sheet Module

• Tables Module

• Target Module

• Text Module

Extrusion of XHTML

XHTML goes beyond modularization by removing unneeded attributes from certain elements

of XHTML Basic, based on device capabilities. If a attribute has been removed, there is often

an existing attribute remaining that has similar capabilities. A comparison of the attributes for

 37

XHTML Standard Tags v s. XHTML Basic Tags, and their assigned modules, is provided as

APPENDIX A.

Style Sheets

XHTML Basic does not support the style element. Instead, the link element can be used to

include external style sheets. The div and span elements and the class attribute are supported to

hook style information onto the structure. Separation between structure and presentation a l-

lows user agents to download the style sheets if they support style sheets; user agents that do

not support style sheets can ignore the external stylesheet. The media attribute can be used to

select the appropriate style sheets.

Script and Events

The script and noscript elements are not supported by XHTML Basic. Usually small devices

have limited memory and CPU power. Execution of script programs may not be supported.

Contents should be readable even if scripts are not executed.

Event handler attributes used to invoke script programs are not supported. Events are device

dependent. A generic event handling mechanism would be more appropriate than hardwiring

the event names in the document type definition.

Presentation

Many simple Web clients cannot display fonts other than monospace. Bi-directional text, bold

faced font, and other text extension elements are not supported.

Again, style sheets be used to create a presentation that is appropriate for the device.

Frames

Frames are not supported. Frames depend on a screen interface and may not be applicable to

some small appliances like phones, pagers, and watches.

Extruding Even Deeper

XHTML extrudes even further, by removing unneeded attributes from certain elements of

XHTML Basic. For example, all of the tags in the standard Text Module, with the exception

of the
 tag, contain the following attributes:

 38

• class

• id

• title

• xml:lang

• onclick

• ondblclick

• onmousedown

• onmouseup

• onmouseover

• onmousemove

• onmouseout

• onkeypress

• onkeydown

• onkeyup

• style

Many hand held devices don’t have a mouse, so all of the mouse events were removed. Style

sheets were also deemed unnecessary, so the style attribute was also removed. What is left of

the attributes for the elements in the Text Module for XHTML Basic are 4 attributes:

• class

• id

• title

• xml:lang

By scaling these elements from 15 elements down to only 4, XHTML Basic lowers it’s mem-

ory usage when Web browsers are displaying pages.

Compact HTML

Compact HTML is similar to XHTML Basic. It is a well-defined subset of HTML 2.0, HTML

3.2, and HTML 4.0 recommendations, designed for small information appliances. Unlike

XHTML, it does not integrate any of XML’s capabilities.

Compact HTML, sometimes referred to as CHTML (but not to be confused with Compiled

HTML), was developed by Tokyo's Access Co. and has been the primary language i-Mode has

 39

used. Recently, NTT DoCoMo, owner of i-mode, and some members of the WAP Forum,

agreed to adopt XHTML Basic as the future of the Mobile Web development language. Al-

though this may spell the end of Compact HTML, the extrusion techniques used in developing

the language are still worth exploring.

Design Principles

Compact HTML was designed to meet the requirements of small information appliances by

following four principles:

1. Completely based on the current HTML W3C recommendations. Since Compact

HTML is defined as a subset of HTML 2.0, HTML 3.2 and HTML 4.0 specifications, it

inherits the flexibility and portability from the standard HTML.

2. Lite Specification. Compact HTML has to be implemented with small memory and

low power CPU. Frames and tables which require large memory are excluded from Com-

pact HTML.

3. Can be viewed on a small mono-color display. Compact HTML assumes a small dis-

play space of black and white color. However, it does not assume a fixed display space, but

it is flexible for the display screen size. Compact HTML also a ssumes single character font.

4. Can be easily operated by the users. Compact HTML is defined so that all the basic

operations can be done by a combination of four buttons; Cursor forward, Cursor backward,

Select, and Back/Stop(Return to the previous page). The functions which require two-

dimensional focus pointing like "image map" and "table" are excluded from Compact

HTML.

Extrusion of Compact HTML

Like XHTML Basic, Compact HTML removes many of HTML’s features, include:

• JPEG image

• Table

• Image map

• Multiple character fonts and styles

• Background color and image

• Frame

• Style sheet

 40

CHTML also removes unnecessary attributes from some of the elements to lower the memory

requirement. As an example, HTML 4’s anchor tag, a, contains the following attributes:

• charset

• type

• name

• href

• hreflang

• rel

• rev

• accesskey

• shape

• coords

• tabindex

• onfocus

• onblur

In Compact HTML, it is reduced to the following list of attributes:

• name

• href

A list of Compact HTML elements and their attributes compared to standard HTML is in-

cluded as APPENDIX B.

Java 2 Micro Edition (J2ME)

Overview

 41

Depending on the targeted computing platform, Sun has grouped the Java technologies into

three editions: Java 2 Micro Edition (J2ME), Java 2 Standard Edition (J2SE) and Java 2 Enter-

prise Edition (J2EE). Each of these editions has been customized specifically for the platform

it is targeting, whether it be a consumer device, a desktop computer or an enterprise network

server (see Figure 3:).

Figure 3: Java 2 Platform Targets (Source: Sun)

The Java 2 Micro Edition consists of the technology, APIs, tools and standards needed to cre-

ate applications for consumer devices. J2ME specifically targets the consumer space, which

covers the range of small commodities such as smart cards and pagers all the way up to the TV

set-top boxes. J2ME provides a complete solution for creating dynamically extensible, net-

worked products and applications for the consumer and embedded appliances.

At a high level, J2ME is currently targeted at two categories of products:

• Shared, fixed, connected information devices. Typical examples of devices in this

category include TV set-top boxes, Internet TVs, Internet-enabled screenphones, high-

end communicators,

• Personal, mobile, connected information devices. Cell phones, pagers and personal

organizers are examples of devices in this category. These devices have a large range

 42

of user interface capabilities, memory availability, processing power and persistent,

high-bandwidth network connections.

In practice, the line between these two categories is defined more by the memory budget,

bandwidth considerations, battery power consumption, and physical screen size of the device,

rather than by its specific functionality or type of connectivity of these devices.

J2ME Architecture

J2ME is a technology defined by many parts and specifications. These many parts and

specifications help J2ME address the diverse needs of a wide spectrum of consumer products.

J2ME provides a range of virtual machine technologies optimized for the different processor

types and memory footprints commonly found in the consumer and embedded devices.

For resource-constrained devices, J2ME supports minimal configurations of the Java virtual

machine and Java APIs that conisists of just the essential capabilities of each kind of device.

These configurations can be extended with new APIs and VMs as new features are added to

these devices and new applications are developed for them by the application vendors.

This flexibility and extensibility are supported by J2ME using the following building blocks:

• Java Virtual Machine Layer. This layer is an implementation of a Java Virtual ma-

chine that is customized for a particular device’s host operating system.

• Configuration Layer. A J2ME configuration defines a minimum platform for a "hori-

zontal" category of devices which has similar memory requirements and processing

power. A configuration defines the Java language and virtual machine features and

minimum class libraries that a device manufacturer can expect to be available on all

devices of the same category.

• Profile Layer A. J2ME device profile is layered on top of a configuration. A profile

defines the specific requirements of a certain "vertical" category of devices. The main

goal of a profile is to define a standard Java platform for a certain vertical device fam-

ily and guarantee interoperability within them. Profiles typically include class libraries

that are more domain-specific than the class libraries provided in a configuration.

The J2ME architecture currently has two configurations. The Connected Device Configura-

tion technology (CDC) uses the CVM, a full-featured VM that is similar to a virtual machine

 43

residing on a desktop system. This configuration is intended for devices with at least a few

megabytes of available memory.

For wireless devices and other systems with severely constrained memory environments,

J2ME uses the Connected Limited Device Configuration technology (CLDC).

Mobile Information Device Profile (MIDP) is one of the profiles defined in the J2ME archi-

tecture which is a set of Java APIs which, together with CLDC provides a complete J2ME a p-

plication run-time environment targeted at mobile information devices, such as cellular phones

and two-way pagers. The MIDP profile address issues such as user interface, persistence stor-

age, networking and application model.

Extruding the Java Virtual Machine: Introduction to KVM

A Java virtual machine is the foundation for Java technology, allowing applications written in

the Java programming language to be portable across different hardware environments and

operating systems. The virtual machine mediates between the application and the underlying

platform, converting the application's bytecodes into machine-level code appropriate for the

hardware and operating system being used. In addition to governing the execution of an appli-

cation's bytecodes, the virtual machine handles related tasks such as managing the system's

memory, providing security against malicious code, and managing multiple threads of program

execution.

The core of J2ME is it’s virtual machine, called the KVM. In order to meet the market need

for a very small footprint Java implementation, the KVM was designed to overcome three key

technical challenges: reducing the size of the virtual machine and class libraries themselves,

reducing the memory utilized by the virtual machine during execution, and allowing for com-

ponents of the virtual machine to be configured to suit particular devices (for example, by a l-

lowing pluggable garbage collection).

KVM is a compact, portable Java virtual machine specifically designed from ground up for

small, resource-constrained devices. The high-level design goal for KVM was to create the

smallest possible “complete” Java virtual machine that would maintain all the central aspects of

 44

the Java programming language, but would run in a resource-constrained device with only a

few hundred kilobytes total memory budget.

KVM initially was an acronym for “Kilobyte Virtual Machine”, because of it’s small footprint

(the Java 2 Standard Edition Java Virtual Machine has a 32 MB footprint). However, this

specification allows for the possibility of running on other virtual machines. This typically ap-

plies to digital cellular phones, pagers, personal organizers, and small retail payment terminals.

The actual role of KVM in the target devices can vary significantly. In some implementations,

KVM is used on top of an existing software stack to give the device the ability to download

and run dynamic, interactive, secure Java content on the device. In other implementations,

KVM is used at a lower level to implement the system software and applications of the device

in the Java programming language. Several alternative usage models are possible.

Extruding KVM

So how does Sun shrink the memory foot print from it’s Standard Edition virtual machine

down to a size realistic for mobile devices? The KVM is designed to support standardized, in-

cremental deployment of Java virtual machine features and Java APIs called for by the Java 2

ME architecture. The KVM specification identifies several optional features which can be

omitted from some minimum initial device configurations, depending on the features and ca-

pabilities of the device. The J2ME architecture includes a small number of configurations that

are specified and standardized by Sun. The KVM specification gives the guidelines that Sun

uses in defining configurations. It spells out exactly which features can be omitted from an ini-

tial configuration.

The following features defined in The Java Virtual Machine Specification are optional in the

KVM architecture. In each case, a feature is designated "optional" because:

1. The applications designed for a particular configuration (or class of device) do not

need the feature.

2. Elimination of the feature significantly reduces memory footprint or enables some

other cost savings or necessary functionality in the class of device targeted by that

configuration.

 45

While these features are optional at the KVM architectural level, they may be required at the

KVM implementation level. Each Java 2 ME configuration specifies whether or not each op-

tional feature is included. Any KVM implementation claiming to support a particular configu-

ration must implement all the features required by that configuration.

Features not explicitly identified in the following list are required and must be implemented in

all configurations.

• Large data types: long, float, and double -- many configurations do not need the ex-

tended range and precision of the larger data types.

• Multi-dimension arrays -- many configurations do not need to support arrays of more that

one dimension.

• Class file verification -- some specified configurations may not need to support on-device

verification of class files. Instead technology is planned to be developed to enable class

files to be efficiently verified "off-line" and delivered to the device.

• Handling of Error classes -- when the Java virtual machine encounters a serious internal

problem, it throws an instance of a subclass of java.lang.Error. However, because there is

often no reasonable form of programmatic recovery from these errors, a configuration may

specify the KVM to halt with a configuration-defined error indication. Or the configuration

may allow device vendors to define device-specific behavior and recovery actions when it

encounters such conditions.

• Threads and event handling -- some configurations may require a different application

execution model from the standard Java technology-based model using the Thread class

and standard event handling.

• Java Native Interface (JNI) -- many configurations might not need the flexibility of the

JNI for the way in which native methods are linked and invoked. A configuration may use a

defined alternative, simpler mechanism to invoke native methods.

• Class loaders -- many configurations might not need the full flexibility of Java class load-

ers. A configuration must specify the mechanisms by which classes are located and loaded

into the KVM.

• Finalization -- many configurations do not need to support object finalization.

• Maximum size limitations -- many configurations do not need to support the full range of

sizes of internal virtual machine data structures. A configuration may specify a "maximum

supported" range for some or all of the following values:

 46

• The number of classes in a package

• The number of interfaces implemented by a class

• The number of fields in a class

• The number of methods in a class

• The number of elements in an array

• The number of bytes of code per method

• The length of a string in a CONSTANT_UTF8 constant pool entry

• The maximum amount of stack that a method may use

• The maximum number of locals that a method may use

• Start-up -- each configuration must specify how the KVM locates the initial class and

method to execute and the expected attributes of that class and method.

The Java 2 Micro Edition specifies a core set of APIs. These are required by all configurations

and, therefore, must be supported by all K virtual machines. In addition to this minimum sub-

set, every KVM must also support whatever APIs are specified by its configuration.

The following list contains only the class names. Many of these classes have been significantly

subsetted in order to reduce the minimum required functionality to key fields and methods.

Basic Classes from java.lang

Object, Runtime, System

These classes are included in the core API because they are fundamental to the operation of

the virtual machine. However, because threading is an optional feature, the minimal core O b-

ject class does not require the various wait and notify methods. In addition, many methods

of Runtime and System are not required.

Throwable Classes from java.lang

Throwable, Exception, RuntimeException and all its subclasses.

 47

These classes are included in the core API because they are also fundamental to the operation

of the virtual machine. More complex methods such as printStackTrace are not required.

Data Type Classes from java.lang

Boolean, Byte, Character, Integer, Short, Void

These classes are included in the core API because they are fundamental and generally useful

to most programmers writing in the Java language. These classes are subsetted to only the

most necessary methods and fields.

String Classes from java.lang

String, StringBuffer

These classes are included in the core API because they are fundamental and generally useful

to most programmers writing in the Java programming language. These classes are subsetted

to only the most necessary methods and fields.

Miscellaneous Classes from java.lang

Math

This class is included in the core API because a few of its methods are generally useful to most

programmers writing in the Java programming language.

Miscellaneous Classes from java.util

BitSet, Dictionary, Enumeration, Hashtable, Vector

These classes are included in the core API because they are generally useful to most program-

mers writing in the Java programming language.

Table 4 illustrates the J2ME’s extrusion of J2SE’s java.lang basic classes.

Table 4. Extrusion of Java Classes (Source: S. Clemons)

 48

API Java 2, Standard Edition Java 2, Micro Edition

Basic classes
from java.lang

Boolean
Character
Class
ClassLoader
Compiler
Double
Float
Integer
Long
Math
Number
Object
Process
Runtime
SecurityManager
String
StringBuffer
System
Thread
ThreadGroup

Object
Runtime
System

Throwable
classes
from java.lang

ArithmeticException
ArrayIndexOutOfBoundsException
ArrayStoreException
ClassCastException ClassNotFoun-
dException CloneNotSupportedEx-
ception
Exception
IllegalAccessException
IllegalArgumentException
IllegalMonitorStateException
IllegalStateException
IllegalThreadStateException In-
dexOutOfBoundsException Instan-
tiationException InterruptedEx-
ception NegativeArraySizeExcep-
tion
NoSuchFieldException
NoSuchMethodException Null-
PointerException
NumberFormatException
RuntimeException SecurityExcep-
tion StringIndexOutOfBoundsExcep-
tion

Throwable
Exception
RuntimeException

In addition to removing many of the classes from the API, J2ME also significantly trims each

class itself. Below is the class declaration for an Object in J2ME:

 49

public class Object {
 public final native Class getClass();
 public native int hashCode();
 public boolean equals(Object obj) {
 return (this == obj);
 }
 public String toString() {
 return getClass().getName() + "@" + Inte-
ger.toHexString(hashCode());
 }

 public final native void notify();
 public final native void notifyAll();
 public final native void wait(long timeout) throws InterruptedExcep-
tion;
 public final void wait(long timeout, int nanos) throws InterruptedEx-
ception {
 if (timeout < 0) {
 throw new IllegalArgumentException("timeout value is nega-
tive");
 }

 if (nanos < 0 || nanos > 999999) {
 throw new IllegalArgumentException(
 "nanosecond timeout value out of range");
 }

 if (nanos >= 500000 || (nanos != 0 && timeout == 0)) {
 timeout++;
 }
 wait(timeout);
 }
 public final void wait() throws InterruptedException {
 wait(0);
 }
}

In contrast, the Object Class declaration in Java’s Standard addition is constructed as such:

public class Object {
 private static native void registerNatives();
 static {
 registerNatives();
 }

 public final native Class getClass();
 public native int hashCode();
 public boolean equals(Object obj) {
 return (this == obj);
 }

 protected native Object clone() throws CloneNotSupportedException;

 public String toString() {

 50

 return getClass().getName() + "@" + Inte-
ger.toHexString(hashCode());
 }

 public final native void notify();
 public final native void notifyAll();
 public final native void wait(long timeout) throws InterruptedExcep-
tion;

 public final void wait(long timeout, int nanos) throws InterruptedEx-
ception {
 if (timeout < 0) {
 throw new IllegalArgumentException("timeout value is nega-
tive");
 }
 if (nanos < 0 || nanos > 999999) {
 throw new IllegalArgumentException(
 "nanosecond timeout value out of range");
 }
 if (nanos >= 500000 || (nanos != 0 && timeout == 0)) {
 timeout++;
 }
 wait(timeout);
 }

 public final void wait() throws InterruptedException {
 wait(0);
 }
 protected void finalize() throws Throwable { }
}

Missing from the J2ME class are the registerNatives(), clone(), and finalize()

methods. This doesn’t seem like much, b ut looking at each method further, the memory sav-

ings becomes noticeably a pparent. The registerNatives() method includes:

typedef struct {

 char *name;

 char *signature;

 void *fnPtr;

} JNINativeMethod;

 jint RegisterNatives(jclass clazz, const JNINativeMethod *methods, jint

nMethods) {

 51

 return functions->RegisterNatives(this,clazz,methods,nMethods);

 jint (JNICALL *RegisterNatives)

 (JNIEnv *env, jclass clazz, const JNINativeMethod *methods, jint

nMethods);

}

Table 5 illustrates the removal of two methods (clone() and finalize()) from the Ob-

ject class definition.

Table 5. Object Class Methods Comparison (Source: S. Clemons)

Java 2, Standard Edition Java 2, Micro Edition
clone() ----

equals(Object obj) equals(Object obj)

FINALIZE() ----

getClass() getClass()

hashCode() hashCode()

notify() notify()

notifyAll() notifyAll()

toString() TOSTRING()

wait() wait()

wait(long timeout) wait(long timeout)

wait(long timeout, int nanos) wait(long timeout, int nanos)

Configurations

Connected Limited Device Configuration (CLDC)

The configuration for mobile devices or the Connected Limited Device Configuration tech-

nology (CLDC technology) defines the Java platforms targeted for small and resource-

constrained devices with small memory budgets and low processing power. The CLDC con-

figuration is composed of the KVM and core class libraries that can be used on a variety of

devices such as cell phones, two-way pagers, personal organizers, home appliances, and so on.

 52

As mentioned earlier, J2ME can have many different virtual machines. CLDC defines a set of

Java virtual machines that can run on the categories of targeted devices and support the pro-

files layered on top of CLDC. The KVM is just one particular implementation of a Java virtual

machine meeting the CLDC specifications.

The primary goals of CLDC is to define a standard Java platform for small, resource con-

strained, connected devices and to enable third party application developers to easily create

applications and content that can be deployed to those devices.

Mobile Information Device Profile (MIDP)

The Mobile Information Device Profile (MIDP) is a set of Java APIs which, together with the

Connected Limited Device Configuration (CLDC), provides a complete J2ME application

runtime environment targeted at mobile information devices, such as cellular phones and two-

way pagers. The MIDP defines the application architecture for these devices and addresses

issues such as user interface, persistence storage and networking.

The MID Profile runtime environment allows to dynamically deploy new applications and ser-

vices on the end user devices. It is designed to work on top of CLDC and the software and

hardware requirements of Mobile Information Devices are in addition to those for the broader

range of Connected Limited Devices. The APIs defined by MIDP allows an open application

development for Mobile Information Devices.

 53

The primary goals of MIDP are to keep the implementation size minimal – must fit in small

"footprint", and efficiency – must run on low-end microprocessors with limited heap size and

with minimal creation of garbage.

MIDP Applications

The applications written for mobile information devices such as cellular phones and pagers are

called MIDlets. Like applets, MIDlets are controlled by the software that runs them. In the

case of an applet, the underlying software is a browser or the appletviewer tool and in the case

of a MIDlet, the underlying software is the cell phone or two-way pager device implementa-

tion that supports the CLDC and MIDP. A MIDlet is a well behaved MIDP application which

lives within the resouce constraints which runs and terminates when requested.

All the devices which support MIDP are supposed to have a device-specific Application Man-

agement Software which takes care of installing, managing and removing MIDlets interactively.

MIDlets move through a well defined lifecycle consisting of five phases. It is the task of the

Application Management Software to move MIDlets through these phases:

• Retrieval - The AMS retrieves the MIDlet from some source and reads the MIDlet

into the device’s memory. The medium through which the MIDlet is downloaded de-

pends on the device. It could be through a serial cable, an IRDA port, or a wireless

network.

• Installation - Once the MIDlet is downloaded, the AMS installs the the MIDlet on the

device. During the installation process, the MIDP implementation verifies that the

MIDlet does not violate the device’s security policies.

• Launching - A MIDlet is launched when a user selects it using the interface provided

in the device. At this point, the MIDlet enters the KVM and the lifecycle methods of

the MIDlet are invoked.

• Version Management -The AMS keeps track of all the MIDlets that are installed on

the device including their version numbers. This information is used to upgrade a

MIDlet to its new version.

• Removal -The AMS removes a MIDlet and cleans up the related resources from the

memory.

 54

A MIDlet can be in one of the three states after it is launched by the Application Management

Software:

• Paused - A MIDlet enters the Paused state once it is created and initialized by the

AMS. It can also enter this state when it is Active.

• Active - This state means the MIDlet is running normally. A MIDlet goes to the Ac-

tive state from the paused state if there are no runtime exceptions during its initializa-

tion.

• Destroyed - This state means the MIDlet has released all its resources and is termi-

nated. A MIDlet can reach this state eithe r from the paused state due to a runtime ex-

ception during its initialization or from the active state when the user has chosen to

close the application.

Memory Savings

By using extrusion techniques, Sun was able to reduce the memory of the application envi-

ronment from 32 megabytes, down to 128 kilobytes, a very significant reduction. The 128 k i-

lobytes of total memory budget required includes the virtual machine, minimal Java libraries

and some heap space for running Java applications. A more typical implementation requires a

total memory budget of 256 kilobytes, of which half is used as heap space for applications, 40

to 80 kilobytes is needed for the virtual machine itself, and the rest is reserved for class librar-

ies. The ratio between volatile memory (e.g., DRAM) and non-volatile memory (e.g., ROM or

Flash) in the total memory budget varies considerably depending on the implementation. A

simple KVM implementation without system class prelinking support needs more volatile

memory than a KVM implementation with system classes preloaded into the device.

Oracle Lite

Oracle8i was introduced in 1999 as a suite of databases designed for power and ease in Inter-

net development and deployment. One of the versions included in this suite is called Oracle

Lite. Oracle8i Lite is an embedded client-side database engine with the ability to sychronize

both applications and data with an Oracle Enterprise server across the Web or even with a

wireless connection. Optimized for use on small, handheld devices such as PDAs and laptops,

Oracle8i Lite allows mobile users to have both a fully functional relational database engine on

 55

their machine for offline work and the necessary tools to synhcronize the applications and data

with their host server.

Oracle Lite is for developing applications running on distributed or mobile PCs. It provides

the strengths and advantages of larger Oracle databases at a fraction of the memory overhead.

It is designed explicitly for software developers. Oracle Lite resides on the Oracle database and

is automatically downloaded from the server to the client when needed. Networked users a c-

cess needed applications directly from the server, while users working in the field download

Oracle Lite, which then acts as a lightweight proxy for Oracle. The interface remains the same

and the user detects no difference between the two scenarios.

Oracle is built upon Open Database Connectivity (ODBC). ODBC is a widely accepted appli-

cation programming interface (API) for database access. All versions of Oracle use Structured

Query Language (SQL) as its database access language.

Oracle Lite SQL

Oracle Lite uses a subset of Oracle’s Structured Query Language (SQL). Table 6 illustrates the

differences between the types of objects allowed in each version. In addition to limiting the

object types, the name identifier for each object has been reduced from a maximum of 128

characters for Oracle, to only 31 characters for Oracle Lite.

Table 6. Oracle vs. Oracle Lite SQL Objects (Source: Oracle)

Oracle Oracle Lite

Clusters ---

Database links ---

Database triggers ---

Dimensions ---

Indexes Indexes

Java classes, Java resources, Java sources Java classes, Java resources, Java sources

Packages ---

Profiles ---

Sequences Sequences

Snapshots Snapshots

Snapshot logs ---

 56

Stored functions, stored procedures ---

Synonyms ---

Tables Tables

Table spaces ---

Views Views

Oracle Lite also has includes a subset of the standard Oracle SQL data types, operators, func-

tions, and commands.

Oracle Lite Memory Savings

Through extrusion and modularity, Oracle Lite in its lightest configuration, with simply the

kernel deployed on EPOC or Palm OS, consumes only 50 kilobytes of memory, quite a sav-

ings over the 1 megabyte footprint of the standard version. In its full configuration, with Java

services, Oracle Lite never exceeds 750 KB.

Tools to Aid Extrusion

CC/PP

CC/PP stands for Composite Capabilities/Preferences Profiles , and is a way to specify what exactly a

user agent (web browser) is capable of doing. This allows for sophisticated content negotiation

techniques between web servers and clients, to produce optimized XML-based markup for

display and use on a wide variety of web user agents.

As the number and variety of devices connected to the Internet grows, there is a correspond-

ing increase in the need to deliver content that is tailored to the capabilities of different de-

vices. Some limited techniques, such as HTTP 'accept' headers and HTML <alt> tags, al-

ready exist. As part of a framework for content adaptation and contextualization, a general

purpose profile format is required that can describe the capabilities of a user agent and prefer-

ences of its user. CC/PP is designed to be such a format.

CC/PP is designed to work with a wide variety of web-enabled devices, from PDAs to desk-

top machines to laptops to WAP phones to phone browsers to web television units to special-

ized browsers for users with disabilities. Proxies may also be used to provide markup trans-

formation, transmission, or caching services for CC/PP-enabled clients and servers.

 57

RDF

CC/PP is based on RDF, the Resource Description Framework, which was designed by the

W3C as a general purpose metadata description language. RDF provides the framework with

the basic tools for both vocabulary extensibility, via XML namespaces, and interoperability.

There is a specification that describes how to encode RDF using XML, and another that de-

fines an RDF schema description language using RDF. RDF was designed to describe the

metadata or machine understandable properties of the Web. RDF is a natural choice for the

CC/PP framework since user agent profiles are metadata intended primarily for communica-

tion between user agents and resource data providers. The metadata provided by CC/PP

contains information about users and devices, instead of documents. This metadata includes:

• A framework in RDF for client capabilities information, such as screen size, user interac-

tion design, software platform, etc.

• Capabilities can be referenced in profiles as URL:s

• The framework becomes extensible when you use RDF

Basic RDF Model

The foundation of RDF is a model for representing named properties and property values.

The RDF model draws on principles from various data representation communities. RDF

properties may be thought of as attributes of resources and in this sense correspond to tradi-

tional attribute-value pairs. RDF properties also represent relationships between resources and

an RDF model can therefore resemble an entity-relationship diagram. (More precisely, RDF

Schemas which are themselves instances of RDF data models are ER diagrams.) In object-

oriented design terminology, resources correspond to objects and properties correspond to

instance variables.

The RDF data model is a syntax-neutral way of representing RDF expressions. The data

model representation is used to evaluate equivalence in meaning. Two RDF expressions are

equivalent if and only if their data model representations are the same. This definition of

equivalence permits some syntactic variation in expression without altering the meaning.

The basic data model consists of three object types:

 58

• Resources - All things being described by RDF expressions are called resources. A re-

source may be an entire Web page. A resource may be a part of a Web page; e.g. a

specific HTML or XML element within the document source. A resource may also be

a whole collection of pages; e.g. an entire Web site. A resource may also be an object

that is not directly accessible via the Web; e.g. a printed book. Resources are always

named by URIs plus optional anchor id:s. Anything can have a URI; the extensibility

of URIs allows the introduction of identifiers for any entity imaginable.

• Properties - A property is a specific aspect, characteristic, attribute, or relation used to

describe a resource. Each property has a specific meaning, defines its permitted val-

ues, the types of resources it can describe, and its relationship with other properties.

• Statements - A specific resource together with a named property plus the value of that

property for that resource is an RDF statement. These three individual parts of a

statement are called, respectively, the subject, the predicate, and the object. The object

of a statement (i.e., the property value) can be another resource or it can be a literal;

i.e., a resource (specified by a URI) or a simple string or other primitive datatype de-

fined by XML. In RDF terms, a literal may have content that is XML markup but is

not further evaluated by the RDF processor.

CC/PP Profile

A CC/PP profile is a description of device capabilities (physical and programmatic) in terms of

a number of "CC/PP attributes" for each component, as well as the user's specified prefer-

ences within the user agent's set of options, and specific qualities about the user that can affect

content processing and display, such as physical location.. The values are then used by a server

to determine the most appropriate form of a resource to deliver to a client. It is structured to

allow a client and/or proxy to describe their capabilities by reference to a standard profile, a c-

cessible to an origin server or other sender of resource data, and a smaller set of features that

are in addition to or different than the standard profile. A set of CC/PP attribute names, per-

missible values and associated meanings constitute a CC/PP vocabulary.

The description of each component is a sub-tree whose branches are the capabilities or prefer-

ences associated with that component. Though RDF makes modeling a wide range of data

structures possible, including a rbitrary graphs, complex data models are usually best avoided

for profile attribute values. A capability can often be described using a small number of

 59

CC/PP attributes, each having a simple, atomic value. Where more complex values are needed,

these can be constructed as RDF subgraphs. One useful useful case for complex attribute val-

ues is to represent alternative values; e.g. a browser may support multiple versions of HTML.

The two primary ways in which a profile might be used are selection and transformation.

Selection is the process by which the originating server chooses an appropriate representation

of requested web content from a finite set of existing representations. For example, the site

might have three versions of a given page: a "rich XHTML with Java and ECMAscript" ver-

sion for visual browsers, a "textual XHTML" version for non-visual browsers and older

browsers, and a WML version for WAP phones. From the capabilities and preferences de-

scribed in the CC/PP profile, the server would select the best match and send that back to the

user agent.

Transformation, on the other hand, assumes that there is no finite set of representations, but

rather than content is created on the fly, based on the properties expressed by the user agent

profile. The content would be stored in an XML-compatible format and then transformed into

an appropriate language (or modules thereof) that could be understood and optimized for the

user agent, such as XHTML or WML.

CC/PP expresses the user agent capabilities and how the user wants to use them. XHTML

document profiles express the required functionalities for what the author perceives as optimal

rendering, and how the author wants them to be used.

The requirements emphasize three aspects: Flexibility, extensibility, and distribution. The

framework must be flexible, since it is unreasonable to predict all the different types of devices

that will be used in the future, or the ways those devices will be used. It must be extensible for

the same reasons: It should not be hard to add and test new descriptions. And it must be dis-

tributed, since relying on a central registry might make it inflexible.

CC/PP Vocabulary

A CC/PP profile describes client capabilities in terms of a number of "CC/PP attributes", or

"features". Each of these features is identified by a name in the form of a URI. A collection of

such names used to describe a client is called a "vocabulary".

 60

CC/PP defines a small, core set of features that are applicable to wide range of user agents,

and which provide a broad indication of a clients capabilities. This is called the "core vocabu-

lary". It is expected that any CC/PP processor will recognize all names in the core vocabulary,

together with an arbitrary number of additional names drawn from one or more "extension

vocabularies".

When using names from the core vocabulary or an extension vocabulary, it is important that

all system components (clients, servers, proxies, etc.) that generate or interpret the names all

apply a common meaning to the same name. It is preferable that different components use the

same name to refer to the same feature, even when they are part of different applications, as

this improves the chances of effective interworking across a pplications that use capability in-

formation.

Within an RDF expression describing a device, a vocabulary name appears as the label on a

graph edge linking a resource to a value for the named attribute. The attribute value may be a

simple string value, or another resource, with its own attributes representing the component

parts of a composite value.

 61

application of EXTRUSION to tcl

What Is TCL?

Tcl is an acronym for Tool Command Language. It is an interpreted language with program-

ming features, available across platforms running Unix, Windows and the Apple Macintosh

operating system. Interpreted languages, also called scripting languages, are compiled at run-

time as opposed to being precompiled.

There are many other scripting languages besides Tcl, including JavaScript, Visual Basic, Perl,

and others. As a group, all of the scripting languages tend to be used for integration applica-

tions, and all offer significant benefits over system programming languages.

Each scripting language has particular strengths. For example, JavaScript is known for its

smooth integration with Web browsers, Visual Basic for its easy-to-learn development envi-

ronment, and Perl for its string-handling capabilities. Tcl's greatest strength is its versatility: it

can be embedded in applications or used standalone, it has outstanding GUI capabilities, and it

can easily be connected to nearly any other application or protocol. Tcl was designed from the

start to be used for many different purposes in many different situations, and the tremendous

diversity of Tcl applications demonstrates that it has met this design goal.

In contrast, most other scripting languages were designed for a narrower set of tasks. They

perform well for those specific tasks but they aren't used for as many different things as Tcl.

For example, JavaScript is the obvious choice to use for simple scripting in a browser, but it is

rarely used for anything outside the browser. Visual Basic provides excellent facilities for creat-

ing Windows GUIs, but it isn't suitable for integrating Windows desktops with Unix servers.

Perl's string handling makes it an excellent choice for system administration tasks, report gen-

eration, and Web scripting, but it doesn't have native GUI capabilities and it isn't as easily em-

beddable as Tcl.

The Tk Widget

Tk, the associated toolkit, is an easy and efficient way of developing window based applica-

tions. Tk is an X11 (X Window System) toolkit based on Tcl, providing a "graphical scripting

 62

language." It is a C language extension of Tcl, and it can be used for easily creating Motif-like

graphical user interfaces under the X Window System, often without writing C code. In con-

trast, writing in C is required to use the X Window System through other interfaces.

Tk provides a set of Tcl commands that create and manipulate widgets. A widget is a window

in a graphical user interface that has a particular appearance and behavior. Widget types in-

clude buttons, scrollbars, menus, and text windows.

Widgets have classes and instances, but are not fully object oriented. It is not possible to sub-

class a widget class and use inheritance. Instead, widgets are very flexible and can be config-

ured in many different ways to tune their appearance. The resource database can store con-

figuration information that is shared by many widgets, and new classes can be introduced to

group resources. Widget b ehavior is shared by using binding tags that group bindings. Instead

of building class hierarchies, Tk uses composition to assemble widgets with shared behavior

and attributes.

Application tasks are split into modules and any new application specific task is written and

compiled as C or C++ program and exported as a new Tcl command. Then a Tcl script, con-

sisting of a series of existing and new Tcl commands, is composed to make the overall applica-

tion. Therefore, several Tcl based applications could be made to work together to create or

extend into a new application.

Tk provides a higher level application programming interface for developing interactive wid-

gets-based applications, particularly for those who wish to concentrate on the functionality of

their application and have no need to gain indepth programming expertise in the underlying

window system and/or verbose toolkits such as OSF/Motif.

Tcl and the Web

It is interesting to reflect on the fact that Tcl and the Web were invented at around the same

time, circa 1988. Some of the early tools were built using Tcl/Tk, such as tkWWW, which was

one of the first graphical browsers also to incorporate editing features. A “feature” of the Web

is that the main delay in delivering a document across the Internet is the connection setup time

and bandwidth constraints, so the programs used to generate dynamic Web pages are not per-

 63

formance-critical. Thus, Tcl and Perl quickly came to be used as languages for scripting CGI

applications, since programming ease and convenience far outweigh any performance advan-

tage.

Tcl provides a dramatically easier way to build integration applications ranging from simple

graphical user interfaces to complex financial, Web, and management applications. This means

that all you need to do is to write a script, insert it into your HTML, and you're ready to roll.

Scripting languages are a simple way to add functionality to any Web page. They allow you to

write simple programs directly inside your HTML. These programs then get executed on the

user's browser or on the server before the page gets to the user. By using scripting, you can

validate the data in client forms, store user preferences on the server and build a Web page on

the fly as the user requests it, and much more.

Client-Side Tcl Applications

Client-side scripting is executed locally on the user's browser. It can increase the performance

of a Web site, because a level of processing can be performed on the browser without having

to make a round-trip to the server. One of the most common uses for client-side scripting is

form validation, where you can check the user input before passing it onto the server.

The main advantages to client-side scripting are as follows:

• Performance

• By processing user input locally, you avoid the need for a round-trip to the server.

• Interactivity

• Using scripting you can build multimedia style interactivity into your pages.

• Controlling ActiveX objects and applets

• You can manipulate controls and applets through client-side scripting.

Tcl Plug-In

Plug-ins are external programs that are loaded into Netscape Navigator on demand to extend

its capabilities to display Web content that Navigator itself does not know how to format and

render. Before plug-ins, non-html Web content had to be displayed in local viewers outside the

Web browser. The Tcl plug-in is a viewer for Tcl and Tk applications, called Tclets. It allows

 64

you to embed the Tclets in a Web page and to display Tk user interfaces in windows in the

main browser window with normal HTML.

When the pages are viewed with Netscape Navigator and the plug-in, the Tclets are executed

to provide custom user interfaces and simple animations inside the browser. Plug-in scripts

have access to all of the power of Tcl and Tk, except for a few features removed for security

reasons. For example, plug-in scripts can use the powerful Tk text and canvas widgets, they

can create Tcl timer events for simple animations, and they can use Tcl's extensive library of

string manipulation commands.

There are currently no Tcl plug-ins for wireless browsers.

Tcl And Integration

Businesses and engineering teams today are often faced with the problem of making diverse

collections of resources work together. These programming tasks are called integration applica-

tions. The resources managed by integration applications can take many forms, such as:

• Components implemented using frameworks such as ActiveX or JavaBeans.

• Devices such as manufacturing equipment or test equipment.

• Applications such as Web servers, enterprise applications, and computer-aided design

tools.

• Data sources such as databases, live news feeds, and Web sites.

• Data formats such as HTML and XML.

• Protocols such as CORBA, DCOM, and HTTP.

Typically integration applications involve communicating between resources such as these, co-

ordinating their operation, and extending their basic capabilities with additional functions.

Drivers For Integration Applications

Integration applications have existed for many years but their importance has risen dramati-

cally over the last 5 -10 years and will continue to rise in the years ahead. The need for integra-

tion applications is being driven by some of the most important trends in the software indus-

try, such as online information management, networked control of devices, network aggrega-

tion, and component frameworks and protocols.

 65

Online Information Management

More and more of the world's information is being stored and accessed online; managing and

presenting this information is an integration application. For example, high-end Web sites such

as those at AOL's Digital City, CNET, and Travelocity create customized Web pages for their

visitors by integrating information from different sources such as databases, live news feeds,

and travel reservation systems. Or, Wall Street trading firms must filter and integrate informa-

tion from a variety of different sources in order to provide traders with the informa tion they

need.

Networked Control Of Devices

Over the last decade computers have been embedded in many of the world's devices. These

embedded processors typically provide remote control interfaces, and with the rise of the

computer networking it has become easy to reach them and manage them remotely. Managing

collections of networked devices is an integration application. For example, in factory automa-

tion the various pieces of equipment on a factory floor must be integrated with each other and

with databases to control and track production. Or, in automated testing the devices are di-

verse pieces of test equipment, which must be coordinated to exercise a test device and extract

performance information.

Network Aggregation

The rise of the Internet, combined with enterprise consolidation, is creating large and hetero-

geneous networks of hardware and software systems. Making these systems work well together

is an integration application. For example, different departments of hospitals have historically

developed their own (different) computer systems. In the past there was no attempt to com-

municate between the departments so the differences were not noticed. Now, however, hospi-

tals are integrating all of their systems in order to coordinate and better manage the flow of

information. As a result, they must now deal with the differences in the departmental systems.

Another example is corporate growth by mergers and acquisitions. A company may initially

have computer systems that are uniform, but in a merger it is l ikely to inherit systems that are

different. After the merger, all of these systems must be integrated to work together.

 66

Component Frameworks And Protocols

Several component frameworks, such as ActiveX and JavaBeans, have become popular in re-

cent years. These frameworks encourage the creation of reusable software components. Mak-

ing components work together is an integration problem. The rise of the Internet has also led

to numerous protocols for communicating between components and applications, such as

CORBA and DCOM. Using these protocols is also an integration task. In addition, it is be-

coming increasingly important to tie together different protocols and component frameworks,

which is an even more challenging integration task.

Why Traditional Programming Approaches Don't Work

Integration applications have characteristics quite different from traditional programming

tasks. In traditional programming the main problem is to create data structures and algorithms

from scratch. System programming languages such as C, C++, and Java work well for these

tasks.

In integration applications, data structures and algorithms are not usually very important: they

are encapsulated in the components being integrated. The most difficult challenges in integra-

tion applications have to do with linkage and coordination:

• How to deal with the variety of things being integrated?

• How to make them all work together?

• How to evolve the applications rapidly in response to changing needs?

Integration applications often incorporate business rules and processes. As a result, they tend

to be ill-structured and evolve rapidly. It is difficult to plan integration applications in advance,

and they must often be modified in the field as needs change.

Furthermore, the people who write integration applications are often not sophisticated

programmers. Their primary area of expertise is typically in a particular domain such as factory

management, financial services, or Web content. They use programming as part of their job

but don't consider themselves to be first and foremost programmers.

Because of these characteristics, system programming languages such as C, C++, or even Java

are poorly suited to integration tasks. The main problem with system programming languages

 67

is inflexibility, which stems from their compilation and strong typing. Compilation freezes the

functionality of an application at the time it is compiled, making it difficult to modify or extend

the behavior of the application in the field. Strong typing forces programs to be carefully

planned in advance and makes it difficult for them to be used in ways that weren't planned. As

a result, system programming languages cannot accommodate the variety and rapid evolution

that are typical in integration applications. System programming languages are also too com-

plex and difficult to learn for many of the people who build integration applications.

Thus it is expensive to build integration applications with system programming languages, and

the resulting applications tend to be brittle and inflexible.

The Power Of Tcl

In contrast, Tcl provides a superb platform for creating integration applications. Tcl's power

comes from two basic features.

First, Tcl makes it easy to connect to any of the things you need to integrate. If you need to

connect any X to any Y, it is easy to create one Tcl extension that connects to X, another that

connects to Y, and use Tcl as the intermediary between them. Dozens of free extensions are

already available for database access, network management, and many other purposes.

Second, with Tcl it is easy to write scripts that manage the connections in powerful ways. In

contrast to system programming languages, Tcl is interpreted and typeless. The interpreted

nature of Tcl makes it easy to modify and extend applications on the fly and evolve them rap-

idly. By being typeless and string-oriented, Tcl hides the differences between components and

makes it easy to move information between them.

The combination of these two features allows integration applications to be developed much

more efficiently with Tcl than with system programming languages such as C++ or Java,

measured either in development time or in lines of code. Furthermore, the applications created

with Tcl are more powerful and flexible.

 68

Tcl Architecture

Tcl has a simple structure. Each line starts out with a command, such as button and a number

of arguments. Each command is interpreted by an interpreter, which is a library of C proce-

dures. This function is responsible for handling all the arguments.

Interpreters

Since Tcl is an interpreted language, to run a Tcl program, you normally pass the script file to

the Tcl interpreter, wish, for example:

 wish hello.tcl

The interpreter is Tcl’s central data structure. An interpreter consists of a set of command

bindings, a set of variable values, and a few other miscellaneous pieces of state. Each Tcl

command is interpreted in the context of a particular interpreter. Some Tcl-based applications

will maintain multiple interpreters simultaneously, each associated with a different widget or

portion of the application. Interpreters are relatively lightweight structures. They can be cre-

ated and deleted quickly, so application programmers should feel free to use multiple interpret-

ers if that simplifies the application. Eventually Tcl will provide a mechanism for sending Tcl

commands and results back and forth between interpreters, even if the interpreters are man-

aged by different processes.

You can also use wish in interactive mode and type in commands at the command line.

There's another standard Tcl interpreter, tclsh, which only understands the Tcl language. tclsh

does not have any of the Tk user interface commands, so you cannot create graphical pro-

grams in tclsh.

Some Tcl freeware applications extend the Tcl language by adding new commands written as

C functions. If such is the case, you need to compile the application instead of just passing its

Tcl code to the wish interpreter. This application program, from a Tcl perspective, is really a

new version of the wish interpreter, which the new C commands linked in. Of course, the a p-

plication program may be a lot more than merely a Tcl interpreter.

 69

Data Types

Tcl supports only one type of data: strings. All commands, all arguments to commands, all

command results, and all variable values are strings. Where commands require numeric argu-

ments or return numeric results, the arguments and results are passed as strings. Many com-

mands expect their string arguments to have certain formats, but this interpretation is up to the

individual commands. For example, arguments often contain Tcl command strings, which may

get executed as part of the commands. The easiest way to understand the Tcl interpreter is to

remember that everything is just an operation on a string. In many cases Tcl constructs will

look similar to more structured constructs from other languages. However, the Tcl constructs

are not structured at all; they are just strings of characters, and this gives them a different be-

havior than the structures they may look like.

Although the exact interpretation of a Tcl string depends on who is doing the interpretation,

there are three common forms that strings take: commands, expressions, and lists.

Commands

A Tcl command string consists of one or more commands separated by newline characters or

semi-colons. Each command consists of a collection of fields separated by white space (spaces

or tabs). The first field must be the name of a command, and the additional fields, if any, are

arguments that will be passed to that command. For example, the command

set a 22

has three fields: the first, set, is the name of a Tcl command, and the last two, a and 22, will

be passed as arguments to the set command. The command name may refer either to a built-

in Tcl command, an application-specific command bound in with the library procedure

Tcl_CreateCommand , or a command procedure defined with the proc built-in command.

Arguments are passed literally as text strings. Individual commands may interpret those strings

in any fashion they wish. The set command, for example, will treat its first argument as the

name of a variable and its second argument as a string value to assign to that variable. For

other commands, arguments may be interpreted as integers, lists, file names, or Tcl commands.

 70

Expressions

Several commands, such as expr, for, and if, treat one or more of their arguments as

expressions and call the Tcl expression processors (Tcl_ExprLong, Tcl_ExprBoolean , etc.)

to evaluate them. The operators permitted in Tcl expressions are a subset of the operators per-

mitted in C expressions, and they have the same meaning and precedence as the corresponding

C operators. Expressions almost always yield numeric results (integer or floating-point values).

A Tcl expression consists of a combination of operands, operators, and parentheses. White

space may be used between the operands and operators and parentheses; it is ignored by the

expression processor. Where possible, operands are interpreted as integer values. Integer val-

ues may be specified in decimal (the normal case), in octal (if the first character of the operand

is 0), or in hexadecimal (if the first two characters of the operand are 0x). If an operand does

not have one of the integer formats given above, then it is treated as a floating-point number if

that is possible. Floating-point numbers may be specified in any of the ways accepted by an

ANSI-compliant C compiler. If no numeric interpretation is possible, then an operand is left

as a string (and only a limited set of operators may be applied to it).

Lists

A list is just a string with a list-like structure consisting of fields separated by white space. For

example, the string

Al Sue Anne John

is a list with four elements or fields. Lists have the same basic structure as command strings,

except that a newline character in a list is treated as a field separator just like space or tab.

Tcl Memory Usage

Running on 32-bit Windows 98, I used a couple of tools in determining memory sizes. To

determine Tcl and Tk’s kernel size, I used a freeware program called PrcView. To determine

Tcl program sizes, I used Tcl’s memory command, accessible when compiling with the

TCL_MEM_DEBUG flag turned on. This allows for memory information to be viewed at the

command line from the Tcl shell. This feature doesn’t work for Tk, since output directed to

stdout/stderr is lost under Win32 when Tk is in control.

 71

There is a source code patch called tclWA.patch that fixes this problem, but I couldn’t get it

to work, so I just used PrcView to determine Tk widget memory usage. I also used the memory

command, and a technique borrowed from Vincent Wartelle, to verify data type sizes.

Kernel Size

Running on Windows 98, a 32-bit machine, the Tcl 8.2 kernel has a memory footprint of

about 348 kilobytes. The Tk toolkit takes up another 385 kilobytes of memory. Other ver-

sions vary in footprint size. With debugging features turned off and excluding Tk, the Tcl

8.0.3 kernel memory footprint is about 300k. Tcl 8.3.0 is about 450k and Tcl 8.3.2 is near 600k.

Another version of Tcl that will be discussed later, Tiny Tcl, occupies about 60 kilobytes of

memory.

Since the domain of this report is the Mobile Internet, I’ll use the Tcl/Tk 2.0 plugin kernels for

the remainder of my memory determinations. With debugging off, the plugin has a footprint

of 343 kbytes for Tcl and 386 kbytes for Tk. Allowing debugging features adds about another

3 kbytes to each.

Byte Alignment

Before discussing data type sizes, it’s important to understand byte alignment, since this di-

rectly affects the size of the data type. 32 bit microprocessors typically organize memory as

shown in Table 7. Memory is accessed by performing 32 bit bus cycles. 32 bit bus cycles can

however be performed at addresses that are divisible by 4. (32 bit microprocessors do not use

the address lines A1 and A0 for addressing memory).

The reasons for not permitting misaligned long word reads and writes are not difficult to see.

For example, an aligned long word X would be written as X0, X1, X2 and X3. Thus the mi-

croprocessor can read the complete long word in a single bus cycle. If the same microproces-

sor now attempts to access a long word at address 0x000D, it will have to read bytes Y0, Y1,

Y2 and Y3. Notice that this read cannot be performed in a single 32 bit bus cycle. The micro-

processor will have to issue two different reads at address 0x100C and 0x1010 to read the

complete long word. Thus it takes twice the time to read a misaligned long word.

Table 7. Byte Alignment (Source EventHelix.com)

 72

 Byte 0 Byte 1 Byte 2 Byte 3
0x1000
0x1004 X0 X1 X2 X3
0x1008
0x100C Y0 Y1 Y2
0x1010 Y3

Compiler Byte Padding

Compilers have to follow the byte alignment restrictions defined by the target microproces-

sors. This means that compilers have to add pad bytes into user defined structures so that the

structure does not violate any restrictions imposed by the target microprocessor.

Data Type Size

Since Tcl is a string based language, each new object will use a minimum of 24 bytes of mem-

ory.

each object =

 any new string, number, date, value à 24 bytes + content size

 any pre-existing string, data, value à 4 bytes (pointer only)

content size =

 depends on encoding and data type :

 one or two bytes per char for string values

 may be 0 for a number (integer/double), if it is never used as a string

 (therefore included in the core tcl object)

each list entry =

 4 bytes + object size of the content

- Each different thing in a Tcl program will cost 24 bytes

 73

- Variables and hash-tables are costly:

 52 bytes overhead for each variable,

 52 bytes overhead for each hash table key

- Lists are not costly:

 4 bytes overhead for each element.

On a 32 bit machine where alignment is 4 byte boundary and the types have the following

sizes,

long 4 bytes

int 4 bytes

char * 4 bytes

double 8 bytes

void * 4 bytes

sizeof (Tcl_Obj) = 4 + 4 + 4 + 4 + MAX (4, 8, 4, 4 + 4)

= 24 bytes

Well, it takes a certain amount of space to store the hash entry (four words plus the size of the

key; about 20 bytes on a 32-bit machine) and more to store the variable (each entry in an array

is an independent variable that can support its own traces, etc.) which adds another 8 words or

32 bytes. This gives about 52 bytes per array member.

Benchmark Tests
C:\Program Files\Tcl\tclplugin2.0>tclsh80

% memory info

total mallocs 2873

 74

total frees 1611

current packets allocated 1262

current bytes allocated 83579

maximum packets allocated 1311

maximum bytes allocated 96094

% for {set i 0} {$i < 10000} {incr i} {

set t($i) abcd

}

% memory info

total mallocs 63016

total frees 41737

current packets allocated 21279

current bytes allocated 629318

maximum packets allocated 21291

maximum bytes allocated 629649

To determine the number of bytes per key, the number of bytes allocated before the function

is subtracted from the number of bytes after, then divided by the number of iteration:

 629318 – 83579 = 545739 / 10000 is approximately 54.6 bytes per key

1. hashtable with empty values

 memory info

 75

 current bytes allocated 152681

 ...

 % for {set i 0} {$i < 10000 } { incr i } {

 set t($i)

 }

 % memory info

 current bytes allocated 698453

 ...

 698453 - 152681 = 545772

 approx 54 bytes per key.

2. hashtable with constant value

 memory info

 current bytes allocated 152550

 ...

 % for {set i 0} {$i < 10000 } { incr i } {

 set t($i) abcd

 }

 % memory info

 current bytes allocated 698363

 76

 ...

 698363 - 152550 = 545813

 approx 54 bytes per key.

3. hashtable with variable value

 memory info

 current bytes allocated 152550

 ...

 % for {set i 0} {$i < 10000 } { incr i } {

 set t($i) "abcd_$i"

 }

 % memory info

 current bytes allocated 1037220

 ...

 1037220 - 152550 = 884670

 approx 89 bytes per key.

4. empty global variables

 % memory info

 current bytes allocated 152550

 ...

 77

 % for { set i 1 } { $i <= 10000 } { incr i } {

 set ::a[set i] ""

 }

 % memory info

 current bytes allocated 729761

 ...

 729761 - 152550 = 577211

 approx 57 bytes per variable

5. global variables with the same value

 % memory info

 ...

 current bytes allocated 152550

 % for { set i 1 } { $i <= 10000 } { incr i } {

 set ::a[set i] "abcd"

 }

 % memory info

 ...

 current bytes allocated 708202

 708202 - 152550 = 555652

 approx. 55 bytes per variable.

6. global variables with different values

 78

 % memory info

 ...

 current bytes allocated 152550

 % for { set i 1 } { $i <= 10000 } { incr i } {

 set ::a[set i] "abcd_$i"

 }

 % memory info

 ...

 current bytes allocated 1047070

 1047070 -152550 = 894520

 approx 89 bytes per variable.

7. empty list entries

 % memory info

 ...

 maximum bytes allocated 152550

 % for {set i 1 } { $i <= 10000 } { incr i } {

 lappend l ""

 }

 % memory info

 ...

 current bytes allocated 202179

 79

 202179 - 152550 = 49629

 approx 5 bytes per list entry.

6. identic list entries

 % memory info

 ...

 current bytes allocated 152550

 % for {set i 1 } { $i <= 10000 } { incr i } {

 lappend ::l abcd

 }

 % memory info

 ...

 current bytes allocated 202215

 202215 - 152550 = 49665

 approx 5 bytes per list entry.

7. different list entries

 % memory info

 ...

 current bytes allocated 152550

 % for {set i 1 } { $i <= 10000 } { incr i } {

 lappend ::l "abcd_$i"

 }

 80

 % memory info

 ...

 current bytes allocated 541083

 541083 - 152550 = 428533

 approx 43 bytes per list entry.

Extrusion of Tcl/Tk

Because of the power, portability, and easy use of Tcl, there has been much discussion and

desire among developers for a smaller version of Tcl that can run on a PDA. As this report

was being completed, two notable versions of Tcl that have been released, targeting small

memory devices. Available documentation is scarce and I haven’t had the opportunity to fully

explore the source codes, Tiny Tcl and Palm Tcl do appear to apply extrusion principles.

There are also at least two other versions of Tcl for the Palm OS being currently developed,

but yet to be released.

Tiny Tcl

Tiny Tcl was announced for release on May 7, 2001 by Karl Lehenbauer through the

comp.lang.tcl newsgroup. Tiny Tcl 6.8 is a rommable, minimal Tcl for embedded applications.

Derived from the venerable Tcl 6.7 release, Tiny Tcl 6.8 has a solid Tcl feature set, excluding

newer capabilities of Tcl 7 and 8 such as the bytecode compiler, namespaces, sockets, and

async event handling, among others.

Excluding C library functions, Tiny Tcl compiles down to less than 60 Kbytes on most ma-

chines, far smaller than any Tcl 7 or Tcl 8 derivatives. On an embedded DOS system with

640K of RAM, programs of up to several thousand lines of code can be executed.

Tiny Tcl should not be confused with TinyTcl, released by John-Claude Whippler in 1999.

TinyTcl wasn’t written in Tcl. It was C++ code that emulated Tcl's behavior.

 81

Palm Tcl

Two days after Tiny Tcl was released, Palm Tcl Version 0.1 was announced on the same news-

group. Developed by Ashok P. Nadkarni, it’s intended for creating applications for handheld

devices running the Palm OS operating system. It’s limitations include no shared library,

inability to handle finds, it does not support full Palm OS API, can only read/write databases

created through Palm Tcl, and has no visual design tool.

Palm Tcl is based on Tcl 7.6 but has some significant differences. Some commands have been

removed because they are not relevant to the Palm OS environment. These commands are –

cd exit file flush gets glob load open puts pwd read seek

tell.

Dynamic memory and stack space is extremely limited in Palm OS devices. Some commands

had to be removed because of their memory usage. Some (memory -optimized) form of these

commands may be added in future versions. These commands are – clock history

regexp regsub.

Some commands have not been implemented to reduce the Palm Tcl code footprint. These

are – case interp package. The following commands have not been implemented but

will be in a future release – after close eof flush socket vwait. The follow-

ing new commands have been added to support Palm OS features – dm form fatal

memstat.

Although Palm OS does provide low level windowing and graphics routines, Palm Tcl is fo-

cused on applications that are based on Palm OS forms. A Palm OS form is basically a con-

tainer window with a title and menu that collects together various user interface elements, such

as buttons and text fields, that are functionally related. An application usually consists of a

number of these forms that the user navigates through using buttons or menu selections.

Tk

Although Palm Tcl replaces the Tk GUI capabilities by using Palm’s forms , there still is a desire

and need to have a smaller version of Tk that can provide it’s own GUI capabilities on other

 82

devices. There is work being done to improve cross-platform GUI differences, such as TkGS

(the Tk Graphics System), but nothing that targets memory limited devices directly.

Extruding Tk

A Sample Application

To test the extrusion benefit for Tk, I used a simple calculator application (see Figure 4:) writ-

ten by Sydney R. Polk of Sun Microsystems . The source code is included as APPENDIX C.

The reasons for selecting this program are that it has practical use on a PDA, and because it

contains two widgets, label and button, that can be modified to illustrate the differences be-

tween standard Tk and a modified version of Tk.

Figure 4: Tcl/Tk Calculator Script (Source: S. Clemons)

Creating the Calculator

BUILDING A WINDOW
All Tk applications are created in a window. Tk uses a token of type tk_Window to repre-

sent each window. When a new window is created, Tk returns a tk_Window token. The

structure is defined in tclInit.h and is included as APPENDIX D.

TH E GRID
The grid is a geometry manager that arranges widgets on a grid with variable-sized and rows.

The Tk_GridCmd procedure in tkGrid.c is invoked to process the grid command. The

label and button widgets will be place in the window using the grid geometry manager.

 83

THE LABEL AND BUTTON WIDGETS
The Tk widget, label, is a simple widget. It appears as a colored rectangular region and might

have a 3d border. A label can also display a string or a bitmap. The Tk widget, button, is a

similar to the label widget, but it also responds to mouse events. Table 8 Lists their modifi-

able attributes.

Table 8. Tk label and button Widget Attributes (Source: S. Clemons)

Attribute Function label button
activeBackground Background color when the mouse is over the button x x
activeForeground Text color when mouse is over button x
anchor Relative position of text x x
background Specifies the normal background color to use when displaying

the widget.
x x

bitmap Specifies a bitmap to display in the widget x x
borderwidth The width of the 3-D border to draw around the outside of the

widget
x x

command Tcl command to invoke x
cursor Specifies the mouse cursor to be used for the widget x x
default Display a default or normal button x
direction Offset direction for posting menus x
disabledForeground Specifies foreground color to use when drawing a disabled

element
 x

font Specifies the font to use when drawing text inside the widget x x
foreground Specifies the normal foreground color to use when displaying

the widget
x x

height Height, in lines of text, or screen units for images x x
highlightBack-
ground

Specifies the color to display when the widget does not have
the input focus

x x

highlightColor Specifies the color to use around the widget when it has the
input focus

x x

highlightThickness The width of the highlight border around the outside of the
widget when it has the input focus

x x

image Specifies an image to display in the widget x x
indicatorOn Boolean that controls if the indicator is displayed: used

with checkbutton, radiobutton, or menubutton
 x

justify how the text lines line up with each other x x
menu Menu posted when menubutton is clicked x
offValue Variable value when checkbutton is not selected x
onValue Variable value when checkbutton is selected x
padx How much extra space to request for the widget in the X-

direction
x x

pady How much extra space to request for the widget in the Y-
direction

x x

relief Specifies the 3-D effect desired for the widget x x
selectColor Color for selector. checkbutton or radiobutton x
selectImage Alternate graphic for selector. checkbutton or ra-

diobutton
 x

state Enabled or deactivated x
takeFocus Determines whether the window accepts the focus during

keyboard traversal (e.g., Tab and Shift-Tab).
x x

text Specifies a string to be displayed inside the widget x x

 84

textVariable Tcl variable that has the value of the text x x
underline Specifies the integer index of a character to underline in the

widget
x x

value Value for Tcl variable when radiobutton is selected x
variable Text variable associated with a checkbutton or ra-

diobutton
 x

width Width in characters for text, or screen units for image x x
wrapLength Maximum character length before text is wrapped x x

In Tcl8.0, both the button and label commands are part of the TkCmd structure in tkWin-

dow.c and are implemented through tkButton.c. The widgets’ attributes are defined in the

tkButton structure in tkButton.h:

typedef struct {
 Tk_Window tkwin;
 Display *display;
 Tcl_Interp *interp;
 Tcl_Command widgetCmd;
 int type;

 Tk_3DBorder activeBorder;
 XColor *activeFg;
 GC activeTextGC;
 Tk_Anchor anchor;
 Pixmap bitmap;
 int borderWidth;
 char *command;
 GC copyGC;
 Tk_Cursor cursor;
 Tk_Uid defaultState;
 Xcolor *disabledFg;
 GC disabledGC;
 int flags;
 Pixmap gray;
 int height;
 char *heightString;
 Tk_3Dborder highlightBorder;
 XColor *highlightColorPtr;
 int highlightWidth;
 Tk_Image image;
 char *imageString;
 int indicatorDiameter;
 int indicatorOn;
 int indicatorSpace;
 int inset;
 Tk_Justify justify;
 Tk_3Dborder normalBorder;
 XColor *normalFg;
 GC normalTextGC;
 char *offValue;
 char *onValue;
 int padX, padY;

 85

 Int relief;
 Tk_3Dborder selectBorder;
 Tk_Image selectImage;
 char *selectImageString;

 char *selVarName;
 Tk_Uid state;
 char *takeFocus;
 char *text;
 int textHeight;
 Tk_TextLayout textLayout;
 int textWidth;
 char *textVarName;
 Tk_Font tkfont;
 int underline;
 int width;
 char *widthString;
 int wrapLength;

} TkButton;

The widgets in the

SIZE OF TH E CALCULATOR IN MEMORY
Without any extrusion performed on the Tk package, calc.tcl used

 403,320 (wish running calc.tcl) -– 396,320 bytes (wish only) = 7 kbytes

Applying Extrusion To The Calculator

To reduce calc.tcl’s memory usage, it is first determined which attributes are not necessary for

wireless applications. When a program implements a button widget, memory is allocated for

the entire structure. So attributes that are not used just waste space in memory. When consid-

ering developing an application for a hand-held device, the TkButton structure can be rewrit-

ten to remove unnecessary elements.

First, I decided to remove all attributes associated with a mouse, this included activeBack-

ground, and activeForeground, which specify a background or text color to display when the

mouse is over the button. Since my program wasn’t going to use a mouse, there was no need

for the cursor attribute, which selects the type of cursor to display when the mouse is moved

over the widget. I also removed the command attribute, which executes a Tcl command

when a button is pressed, because keyboard strokes can be binded to the button instead.

 86

I also decided to remove all color related attributes, which included foreground,

highlightBackground, highlightColor, highlightThickness, and

selectColor. Keeping the bitmap option, I was able to remove image and selectImage

and still retain custom graphic capabilities.

Once I determined which attributes to remove, I simply commented them out of the source and

header files. The source files for Tcl and Tk are free and readily available for download from nu-

merous sources on the Internet. The source files came with a make file to aid in the compilation

process. The make file (makefile.vc) is executed with Microsoft’s Visual C++ 5.0. There was quite

a bit of modification required to the locations of various executable files and libraries in the make

file to get the program’s to build correctly.

Since a Tk button and label share the same attributes, there structures are stored in the tkBut-

ton.h and tkButton.c files. Compilation revealed that there were also some necessary modifications

to be made to a couple of Windows operating system specific files – tkWinButton and tkWinWm.c

(Window’s window manager). Once those modifications were made, a new version of Tcl and

Tk were successfully compiled.

 87

RESULTS and discussions

The Results

Running the calculator script with the modifications made to the button attributes revealed

no differences, as far as the end-user is concerned, with the application. The buttons and la-

bels performed as they did with the unmodified version of Tk.

With no changes made to the calc.tcl script, a small memory savings was achieved simply by

removing unnecessary attributes from the Tk button widget. Unexpectedly, not only did

the application require less memory, but the wish shell also allocated 240 bytes less memory

when executed,, although the total allocated memory remained unchanged. After reviewing

data types sizes in section 0, this actually makes sense. Since each data type is 24 bytes plus the

size of the contents (0 in this case), removing the 10 attributes should total 240 bytes. The

tk80.dll dynamic loaded library also was reduced by 4096 bytes.

Prior to any extrusion to the Tk package, calc.tcl used 98,328 bytes of memory from the heap:

 1,442,144 bytes (wish running calc.tcl) – 1,343,816 bytes (wish only) = 98,328 bytes

After extrusion, calc.tcl used only 93,768 bytes, a savings of 4560 bytes:

 1,437,344 bytes (wish running calc.tcl) – 1,343,576 bytes (wish only) = 93,768 bytes

This number is also consistent with expected results. Since the calculator script includes 18

buttons and 1 label, and each widget had 10 attributes removed, a total memory savings of

4560 bytes should result:

 10 attributes x 24 bytes saved each = 240 bytes per widget x 19 widgets = 4560 bytes total

Discussion

It is obvious that a more thorough extrusion of the Tk widgets, targeted at particular mobile

devices, can result in significant memory usage reduction. Enough so that a GUI tool kit can

be made available to provide feature rich applications to mobile users.

 88

There is currently no governing body of the Tcl/Tk language. Being an open source language,

the community relies on its own developers to provide new versions, enhancements, and bug

fixes for it. The lack of structure does hamper the progression of Tcl/Tk, but also awards the

freedom for users to develop the language as they see fit.

As stated before, there is an active interest in a version of Tk that can be ported to various de-

vices. A thorough knowledge of the targeted device, it’s capabilities and limitations, is required

to provide a tool that is truly useful to both the developer and the end-user. My knowledge is

limited in that respect, but the information gathered in this report will be made available to the

Tcl community so that perhaps those with competence can use the principles of extrusion to

finish the work started here.

 89

conclusions and recommendations

A Return To Simpler Days

There was a time, not so long ago, that memory costs and restrictions forced programmers to

develop very tight code - programs that managed memory extremely well. As memory prices

have dropped, so has the need to write memory conscious software. Feature intense applica-

tions are being developed with little or no regard for memory consumption. Many of these

features are not ever used. With the dawn of the Mobile Internet, we have come full cycle.

Mobile users still demand application quality similar to that they have grown accustomed to on

their desktops. Anything less, and many feel it’s not worth the trouble. The responsibility

now lies on the developer to provide similar applications in a much more limited environment.

For developers to provide mobile users with value-added applications, we must relearn the lost

art of memory management. But not even that will be enough. Application languages like

XHTML Basic, CHTML, J2ME, Oracle Lite, and yes, even Tiny Tcl, have shown that soft-

ware engineers can provide alternative solutions to the memory crisis. By applying extrusion

principles and removing unnecessary components and reducing unneeded attributes from

those that comprise an application, smaller applications with similar features are being pro-

duced for mobile users.

Extrusion provides a viable method to develop content-rich software applications for mobile

devices without increasing hardware capabilities. Costs are limited by increasing developer

productivity by negating the need to learn new languages or rewrite existing applications.

An across the board solution for all languages is not easily implemented, though. The problem

is a catch-22. The Mobile Internet hasn’t take off because the applications are so limited, and

corporations are not quick to spend money developing new languages for a domain that

doesn’t have many users. But in the not too distant future, that will change. Languages like

J2ME and Oracle Lite are providing quality applications to the mobile environment. This,

coupled with improved hardware and increased bandwidth over wireless networks, will attract

huge numbers of users to the Mobile Internet.

 90

 The big companies like Sun and Oracle have the personnel and financial resources to take on

such endeavors. J2ME and Oracle Lite may not always be the best solution for a particular

mobile application, but they may be the only ones. For those developers that are most com-

fortable and productive working with other languages, such as C++, Visual Basic, Perl, Py-

thon, Lisp, and SmallTalk, the solution is a grass-roots approach.

We have to provide our own efforts to extrude our language of choice into one that can be

ported to mobile devices. Learn about memory management, small memory architecture, and

component-based engineering. Join a news group of your respective language to keep up to

date on individual efforts in your domain. Look closely at the components that will comprise

a given application and then apply the principles of extrusion to reduce memory consumption.

With knowledge and effort, the software engineers of today will be able to provide the applica-

tion features that end-users demand today, not tomorrow.

 91

APPENDIX A

XHTML Standard TAGS vs xHTML Basic Tags

Table 9. XHTML Standard Tags vs. XHTML Basic Tags (Source: S. Clemons)

XTML
Tag

Description XHTML
Attributes

XHTML
 Basic

 Attributes

Module

<a> Defines an anchor

accesskey
charset
class
href
hreflang
id
rel
rev
tabindex
title
type
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress
onkeydown
onkeyup
style

accesskey
charset
class
href
hreflang
id
rel
rev
tabindex
title
type
xml:lang

Client -Side Image Map
Hypertext
Intrinsic
Name
Target

<abbr> Defines an abbreviation

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress
onkeydown
onkeyup
style

class
id
title
xml:lang

Text

<acro-
nym>

Defines an acronym

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress

class
id
title
xml:lang

Text

 92

onkeydown
onkeyup
style

<applet> Applet
Name

<ad-
dress>

Defines an address element

class
dir
id
lang
onclick
ondblclick
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
style
title
xml:lang

class
id
title
xml:lang

Text

<area> Defines an area inside an image
map

 Client -Side Image Map
Intrinsic
Target

 Defines bold text

 Presentation

<base> Defines the base URL or target for
the anchors in the Web document.

 href Base
Target

<bdo> Defines or alters the default algo-
rithm used for the language and
display direction.

 Bi-Directional Text

<big> Defines big text

 Presentation

<blockqu
ote>

Defines a long quotation

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style
cite

cite
class
id
title
xml:lang

Text

<body> Defines the body element

 class
id
tit le
xml:lang

Intrinsic
Structure

 Inserts a single line break

class
id
title

class
id
title

Text

<button> Defines a push button

 Forms
Intrinsic

<cap-
tion>

Defines a table caption

 align
class

Basic Tables
Tables

 93

id
title
xml:lang

<cite> Defines a citation

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<code> Defines computer code text

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<col> Defines attributes for table col-
umns

 Tables

<col-
group>

Defines groups of table columns

 Tables

<dd> Defines a definition description

 class
id
title
xml:lang

List

 Defines deleted text

 Edit

<dfn> Defines a definition term

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<div> Defines a section in a document

class
id

class
id

Text

 94

title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

title
xml:lang

<dl> Defines a definition list

 class
id
title
xml:lang

List

<dt> Defines a definition term

 class
id
title
xml:lang

List

 Defines emphasized text

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<field-
set>

Defines a fieldset

 Forms

<form> Defines a form

 action
class
enctype
id
method
title
xml:lang

Basic Forms
Forms
Intrinsic
Name
Target

<frame> Defines a sub window (a frame)

 Name

<frame-
set>

Defines a set of frames

 Intrinsic

<h1> Defines header 1

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-

class
id
title
xml:lang

Text

 95

keydown onke-
yup
style

<h2> Defines header 2

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<h3> Defines header 3

 class
id
title
xml:lang

Text

<h4> Defines header 4

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<h5> Defines header 5

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover
onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

class
id
title
xml:lang

Text

<h6> Defines header 6

class
id
title
xml:lang
onclick
ondblclick
onmousedown
onmouseu
onmouseover

class
id
title
xml:lang

Text

 96

onmousemove
onmouseout
onkeypress on-
keydown onke-
yup
style

<head> Defines information about the
document

 xml:lang Structure

<hr> Defines a horizontal rule

 Presentation

<html> Defines an html document

 version
xml:lang
xmlns

Structure

<i> Defines italic text

<iframe> Defines an inline sub window
(frame)

 IFrame
Name

 Defines an image

 alt
class
height
id
longdesc
src
title
width
xml:lang

Client -Side Image Map
Image
Name
Server-Side Image
Map

<input> Defines an input field

 checked
class
id
maxlength
name
size
src
title
type
value
xml:lang

Basic Forms
Client -Side Image Map
Forms
Intrinsic
Server-Side Image
Map

<ins> Defines inserted text

 Edit

<kbd> Defines keyboard text

 class
id
title
xml:lang

Text

<label> Defines a label

 accesskey
class
for
id
title
xml:lang

Basic Forms
Forms
Intrinsic

<legend> Defines a title in a fieldset

 Forms

 Defines a list item

 class
id
title
xml:lang

List

<link> Defines a resource reference

 charset
class
href
hreflang

Link
Target

 97

id
media
rel
rev
title
type
xml:lang

<map> Defines an image map

 Client -Side Image Map
Name

<meta> Defines meta information

 content
http-equiv
name
scheme
xml:lang

Meta Information

<no-
frames>

Defines a noframe section

<no-
script>

Defines a noscript section

 Scripting

<object> Defines an embedded object

 Client -Side Image Map
Object

 Defines an ordered list

 class
id
title
xml:lang

List

<optgrou
p>

Defines an option group

 Forms

<option> Defines an item in a list box

 class
id
selected
title
value
xml:lang

Basic Forms
Forms

<p> Defines a paragraph

 class
id
title
xml:lang

Text

<param> Defines a parameter for an object

 Applet
Object

<pre> Defines preformatted text

 class
id
title
xml:lang
xml:space

Text

<q> Defines a short quotation

 cite
class
id
title
xml:lang

Text

<samp> Defines sample computer code

 class
id
title
xml:lang

Text

<script> Defines a script

 Scripting

<select> Defines a selectable list

 class
id
multiple
name
size
title
xml:lang

Basic Forms
Forms
Intrinsic

 98

<small> Defines small text

 Presentation

 Defines a section in a document

 class
id
title
xml:lang

Text

 Defines strong text

 class
id
title
xml:lang

Text

<style> Defines a style definition

 Style Sheet

<sub> Defines subscripted text

 Presentation

<sup> Defines superscripted text

<table> Defines a table

 border
cellpadding
cellspacing
class
id
title
width
xml:lang

Basic Tables
Tables

<tbody> Defines a table body

 Tables

<td> Defines a table cell

abbr
axis
headers scope
rowspan colspan
Number
cellhalign; cell-
valign

abbr
align
axis
class
colspan
headers
id
rowspan
scope
title
valign
xml:lang

Basic Tables
Tables

<tex-
tarea>

Defines a text area

 class
cols
id
name
rows
title
xml:lang

Basic Forms
Forms
Intrinsic

<tfoot> Defines a fixed table footer

 Tables

<th> Defines a table header

 abbr
align
axis
class
colspan
headers
id
rowspan
scope
title
valign
xml:lang

Basic Tables
Tables

<thead> Defines a fixed table header

 Tables

 99

<title> Defines the document title

 xml:lang Structure

<tr> Defines a table row

 align
class
id
title
valign
xml:lang

Basic Tables
Tables

<tt> Defines teletype text

 Presentation

 Defines an unordered list

 class
id
title
xml:lang

List

<var> Defines a variable

 class
id
title
xml:lang

Text

 100

APPENDIX B

Compact HTML Tag List

Table Legend:
--HTML(2.0:HTML2.0, 3.2:HTML3.2, 4.0:HTML4.0)
–CH Compact HTML

Table 10. Compact HTML Tag List (Source: W3C)

No Elements Attributes HTML CH Comments
1 !- - 2.0 CH --
2 !DOCTYPE - 2.0 CH --

3
&xxx;
 - 2.0 CH

--
&,©,>,<,",®
;,
--�•`

4 A

name=
href="URL"
rel=
rev=
title=
urn=(deleted from HTML3.2)
methods=(deleted from
HTML3.2)

2.0

CH
CH
-
-
-
-
-

--

5 ABBR - 4.0 - --
6 ACRONYM - 4.0 - --
7 ADDRESS - 2.0 - --Only one font.
8 APPLET - 3.2 - --(Deprecated element in HTML4.0)

9 AREA

shape=
coords=
href="URL"
alt=
nohref

3.2 - --

10 B - 2.0 - --Only one font.
11 BASE href="URL" 2.0 CH --

12 BASEFONT size= 3.2 -
--Only one font.
--(Deprecated element in HTML4.0)

13 BDO - 4.0 - --
14 BIG - 3.2 - --Only one font.

15
BLOCKQUO
TE - 3.2 CH --

16 BODY

-
bgcolor=
background=
text=
link=
vlink=
alink=

2.0
3.2
3.2
3.2
3.2
3.2
3.2

CH
-
-
-
-
-
-

--Non-white colors are drawn as
black.

17 BR
-
clear=all/left/right

2.0
3.2

CH
CH

--

18 BUTTON - 4.0 - --
19 CAPTION - 3.2 - --

 101

20 CENTER - 3.2 CH --(Deprecated element in HTML4.0)
21 CITE - 2.0 - --Only one font.
22 CODE - 2.0 - --Only one font.
23 COL - 4.0 - --
24 COLGROUP - 4.0 - --
25 DD - 2.0 CH --
26 DEL - 4.0 - --
27 DFN - 3.2 - --

28 DIR -
compact 2.0 CH

- --(Deprecated element in HTML4.0)

29 DIV -
align=left/center/right 3.2 CH

CH --

30 DL -
compact 2.0 CH

- --

31 DT - 2.0 CH --
32 EM - 2.0 - --Only one font.
33 FIELDSET - 4.0 - --

34 FONT
size=n
size=+n/-n
color=

3.2
-
-
-

--Only one font.
--(Deprecated element in HTML4.0)

35 FORM
action=
method=get/post
enctype=

2.0
CH
CH
CH

--

36 FRAME - 4.0 - --(Frameset DTD)
37 FRAMESET - 4.0 - --(Frameset DTD)
38 HEAD - 2.0 CH --

39 Hn
-
align=left/center/right

2.0
3.2

CH
CH --

40 HR

-
align=left/center/right
size=
width=
noshade

2.0
3.2
3.2
3.2
3.2

CH
CH
CH
CH
CH

--

41 HTML
-
version=

2.0
3.2

CH
CH --version="C-HTML 1.0".

42 I - 2.0 - --Only one font.
43 IFRAME - 4.0 - --(Frameset DTD)

44 IMG

src=
align=top/middle/bottom
align=left/right
width=
height=
hspace=
vspace=
alt=
border=
usemap=
ismap=

2.0
2.0
3.2
3.2
3.2
3.2
3.2
2.0
3.2
3.2
2.0

CH
CH
CH
CH
CH
CH
CH
CH
CH
-
-

--Large images compressed automati-
cally.

45 INPUT

type=text
name=
size=
maxlength=
value=

2.0

CH
CH
CH
CH
CH

--Max character buffer 512 bytes.

 102

46 INS - 4.0 - --

47 ISINDEX
-
prompt=

2.0
3.2

-
-

--(Deprecated element in HTML4.0)

48 KBD - 2.0 - --Only one font.
49 LABEL - 4.0 - --
50 LEGEND - 4.0 - --

51 LI

-
type=1/A/a/I/i
type=circle/disc/square
value=

2.0
3.2
3.2
3.2

CH
-
-
-

--

52 LINK

href="URL"
rel=
rev=
urn=
methods=
title=
id=

2.0 - --

53 LISTING - 2.0 -
--Only one font.
--(Obsolete element in HTML4.0)

54 MAP name= 3.2 - --

55 MENU
-
compact 2.0

CH
- --(Deprecated element in HTML4.0)

56 META
name=
http-equiv=
content=

2.0 CH --http-equiv="refresh" only.

57 NEXTID n= 2.0 - --Deleted from HTML3.2.
58 NOFRAMES - 4.0 - --(Frameset DTD)
59 NOSCRIPT - 4.0 - --
60 OBJECT - 4.0 - --

61 OL

-
type=1/A/a/I/i
start=
compact

2.0
3.2
3.2
2.0

CH
-
-
-

--

62 OPTGROUP - 4.0 - --

63 OPTION
-
selected
value=

2.0
CH
CH
-

--

64 P
-
align=left/center/right

2.0
3.2

CH
CH --

65 PARAM - 4.0 - --
66 PLAINTEXT - 2.0 CH --(Obsolete element in HTML4.0)

67 PRE
-
width=

2.0
3.2

CH
-

--

68 Q - 4.0 - --
69 S - 2.0 - --(Deprecated element in HTML4.0)
70 SAMP - 2.0 - --Only one font.
71 SCRIPT - 3.2 - --

72 SELECT
name=
size=
multiple

2.0
CH
CH
CH

--Max character buffer 4 Kbytes.

73 SMALL - 3.2 - --Only one font.
74 SPAN - 4.0 - --
75 STRIKE - 2.0 - --(Deprecated element in HTML4.0)

 103

76 STRONG - 2.0 - --Only one font.
77 STYLE - 2.0 - --
78 SUB - 3.2 - --
79 SUP - 3.2 - --

80 TABLE

-
align=left/center/right etc.
border=
width=
cellspacing=
cellpadding=

3.2 - --

81 TBODY - 4.0 - --

82 TD

-
align=left/center/right
valign=top/middle/bottom/baselin
e
rowspan=
colspan=
width=
height=
nowrap

3.2 - --

83 TEXTAREA
name=
rows=
cols=

2.0
CH
CH
CH

--Max character buffer 512 bytes.

84 TFOOT - 4.0 - --

85 TH

-
align=left/center/right
valign=top/middle/bottom/baselin
e
rowspan=
colspan=
width=
height=
nowrap

3.2 - --

86 THEAD - 4.0 - --
87 TITLE - 2.0 CH --

88 TR

-
align=left/center/right
valign=top/middle/bottom/baselin
e

3.2 - --

89 TT - 2.0 - --Only one font.
90 U - 3.2 - --(Deprecated element in HTML4.0)

91 UL
-
type=disk/circle/square
compact

2.0
3.2
2.0

CH
-
-

--

92 VAR - 2.0 - --Only one font.

93 XMP - 2.0 -
--Only one font.
--(Obsolete element in HTML4.0)

 104

APPENDIX C

Tcl calculator source code

calc - A simple calculator for use as a plug-in demo.
Author: Steve Clemons
This is a modification of Sydney Polk's (of Sun Microsystems)
calc.tcl script. This script replaces the command commands with
keyboard bindings to remove mouse capabilities.

The global variable state is used to keep track of what the user has
done. It has several fields: Whether or not the last button was a
CE, the current value of the expression, the current value of the
entry window.

proc doClear {} {
 global state

 set state(entry) "0."
 set state(dot) 0
 if {$state(entrystarted) == 0} {
 set state(result) "0."
 set state(operation) ""
 }
 set state(entrystarted) 0
}

proc doDot {} {
 global state

 set state(dot) 1
}

proc doAppend {what} {
 global state

 if {$state(entrystarted) == 0} {
 set state(entry) "0."
 }

 if {[string compare $state(operation) ""] == 0} {
 set state(result) "0."
 }

 if {!($what == 0 && [string compare $state(entry) "0."] == 0)} {
 set state(entrystarted) 1
 if {$state(dot) == 1} {
 set state(entry) [format "%s%s" $state(entry) $what]
 } else {
 regexp {([-0123456789]+).} $state(entry) foo integer

 if {[string compare $integer "0"] == 0} {
 set state(entry) [format "%s." $what]
 } else {
 set state(entry) [format "%s%s." $integer $what]
 }

 105

 }
 }
}

proc doOperation {what} {
 global state

 if {[string compare $state(operation) ""] != 0} {
 doEqual
 }
 set state(operation) $what
 set state(result) $state(entry)
 set state(entrystarted) 0
 set state(dot) 0
}

proc doEqual {} {
 global state

 if {[string compare $state(operation) ""] != 0} {
 set state(result) \
 [expr "$state(result) $state(operation) $state(entry)"]
 } else {
 set state(result) $state(entry)
 }
 set state(entry) $state(result)
 set state(entrystarted) 0
 set state(operation) ""
 set state(dot) 0
}

proc doSign {} {
 global state

 if {[string compare $state(entry) "0."] != 0} {
 set sign ""
 set abs ""
 regexp {([-]?)([0-9.]+)} $state(entry) foo sign abs
 if {[string compare $sign "-"] == 0} {
 set state(entry) $abs
 } else {
 set state(entry) [format "-%s" $abs]
 }
 set state(entrystarted) 1
 }
}

set state(result) "0."
set state(entry) "0."
set state(operation) ""
set state(dot) 0
set state(entrystarted) 0

label .label -textvariable state(entry) -justify right -anchor e

set i 48
foreach {number} {0 1 2 3 4 5 6 7 8 9} {

 106

 set buttons($number) [button .$number -text $number]
 bind . <KeyPress-$number> "doAppend $number"
}

set buttons(clear) [button .clear -text C/CE -padx 1]
bind . <KeyPress-c> {doClear}
foreach {label operation} {div / mult * minus - plus +} {
 set buttons($label) [button .$label -text $operation]
 bind . <KeyPress-$operation> "doOperation $operation"
}

set buttons(dot) [button .dot -text .]
bind . <KeyPress-.> {doDot}
set buttons(sign) [button .sign -text +/- -padx 1]
bind . <KeyPress-m> {doSign}

set buttons(equal) [button .equal -text =]
bind . <KeyPress-=> {doEqual}

grid .label -column 0 -row 0 -columnspan 4 -sticky news
grid $buttons(clear) $buttons(div) $buttons(mult) $buttons(minus) \
 –sticky news
grid $buttons(7) $buttons(8) $buttons(9) -sticky news
grid $buttons(4) $buttons(5) $buttons(6) -sticky news
grid $buttons(1) $buttons(2) $buttons(3) -sticky news
grid $buttons(0) $buttons(dot) $buttons(sign) -sticky news
grid $buttons(plus) -column 3 -row 2 -rowspan 2 -sticky news
grid $buttons(equal) -column 3 -row 4 -rowspan 2 -sticky news

 107

APPENDIX D

TK_WINDOW STRUCTURE

typedef struct TkWindow {

 Display *display; /* Display containing window. */
 TkDisplay *dispPtr; /* Tk's information about display
 * for window. */
 int screenNum; /* Index of screen for window, among all
 * those for dispPtr. */
 Visual *visual; /* Visual to use for window. If not default,
 * MUST be set before X window is created. */
 int depth; /* Number of bits/pixel. */
 Window window; /* X's id for window. NULL means window
 * hasn't actually been created yet, or it's
 * been deleted. */
 struct TkWindow *childList; /* First in list of child windows,
 * or NULL if no children. List is in
 * stacking order, lowest window first.*/
 struct TkWindow *lastChildPtr;
 /* Last in list of child windows (highest
 * in stacking order), or NULL if no
 * children. */
 struct TkWindow *parentPtr; /* Pointer to parent window (logical
 * parent, not necessarily X parent). NULL
 * means either this is the main window, or
 * the window's parent has already been
 * deleted. */
 struct TkWindow *nextPtr; /* Next higher sibling (in stacking order)
 * in list of children with same parent. NULL
 * means end of list. */
 TkMainInfo *mainPtr; /* Information shared by all windows
 * associated with a particular main
 * window. NULL means this window is
 * a rogue that isn't associated with
 * any application (at present, this
 * only happens for the dummy windows
 * used for "send" communication). */
 /*
 * Name and type information for the window:
 */
 char *pathName; /* Path name of window (concatenation
 * of all names between this window and
 * its top-level ancestor). This is a
 * pointer into an entry in
 * mainPtr->nameTable. NULL means that
 * the window hasn't been completely
 * created yet. */
 Tk_Uid nameUid; /* Name of the window within its parent
 * (unique within the parent). */
 Tk_Uid classUid; /* Class of the window. NULL means window
 * hasn't been given a class yet. */
 /*
 * Geometry and other attributes of window. This information
 * may not be updated on the server immediately; stuff that

 108

 * hasn't been reflected in the server yet is called "dirty".
 * At present, information can be dirty only if the window
 * hasn't yet been created.
 */

 XWindowChanges changes; /* Geometry and other info about
 * window. */
 unsigned int dirtyChanges; /* Bits indicate fields of "changes"
 * that are dirty. */
 XSetWindowAttributes atts; /* Current attributes of window. */
 unsigned long dirtyAtts; /* Bits indicate fields of "atts"
 * that are dirty. */

 unsigned int flags; /* Various flag values: these are all
 * defined in tk.h (confusing, but they're
 * needed there for some query macros). */
 /*
 * Information kept by the event manager (tkEvent.c):
 */

 TkEventHandler *handlerList;/* First in list of event handlers
 * declared for this window, or
 * NULL if none. */
#ifdef TK_USE_INPUT_METHODS
 XIC inputContext; /* Input context (for input methods). */
#endif /* TK_USE_INPUT_METHODS */

 /*
 * Information used for event bindings (see "bind" and "bindtags"
 * commands in tkCmds.c):
 */

 ClientData *tagPtr; /* Points to array of tags used for bindings
 * on this window. Each tag is a Tk_Uid.
 * Malloc'ed. NULL means no tags. */
 int numTags; /* Number of tags at *tagPtr. */

 /*
 * Information used by tkOption.c to manage options for the
 * window.
 */

 int optionLevel; /* -1 means no option information is
 * currently cached for this window.
 * Otherwise this gives the level in
 * the option stack at which info is
 * cached. */
 /*
 * Information used by tkSelect.c to manage the selection.
 */

 struct TkSelHandler *selHandlerList;
 /* First in list of handlers for
 * returning the selection in various
 * forms. */

 /*

 109

 * Information used by tkGeometry.c for geometry management.
 */

 Tk_GeomMgr *geomMgrPtr; /* Information about geometry manager for
 * this window. */
 ClientData geomData; /* Argument for geometry manager procedures. */
 int reqWidth, reqHeight; /* Arguments from last call to
 * Tk_GeometryRequest, or 0's if
 * Tk_GeometryRequest hasn't been
 * called. */
 int internalBorderWidth; /* Width of internal border of window
 * (0 means no internal border). Geometry
 * managers should not normally place children
 * on top of the border. */

 /*
 * Information maintained by tkWm.c for window manager communication.
 */

 struct TkWmInfo *wmInfoPtr; /* For top-level windows (and also
 * for special Unix menubar and wrapper
 * windows), points to structure with
 * wm-related info (see tkWm.c). For
 * other windows, this is NULL. */

 /*
 * Information used by widget classes.
 */

 TkClassProcs *classProcsPtr;
 ClientData instanceData;

 /*
 * Platform specific information private to each port.
 */
 struct TkWindowPrivate *privatePtr;

}TkWindow;

 110

APPENDIX E

GLOSSARY

appliance - Runs applications and is a visual interface between the user and the network. There
are several classes of user appliances—the desktop workstation, laptop, palmtop, pen-based
computer, Personal Digital Assistant (PDA), and pager.

application layer - Establishes communications with other users and provides services such as
file transfer and electronic mail to the end users of the network.

application process - An entity, either human or software, that uses the services offered by the
application layer of the OSI reference model.

attribute - A property or characteristic.

CC/PP - Composite Capabilities/Preferences Profiles. A way to specify what exactly a user
agent (web browser) is capable of doing.

application software - Accomplishes the functions users require, such as database access, elec-
tronic mail, and menu prompts. Therefore, application software directly satisfies network re-
quirements, particularly user requirements.

bandwidth - Specifies the amount of the frequency spectrum that is usable for data transfer. In
other words, it identifies the maximum data rate a signal can attain on the medium without
encountering significant attenuation (loss of power).

baud rate - The number of pulses of a signal that occur in one second. Thus, baud rate is the
speed the digital signal pulses travel.

bit rate - The transmission rate of binary symbols (“0” and “1”). Bit rate is equal to the total
number of bits transmitted in one second.

Broadband - A signal that has undergone a shift in frequency. Normally with LANs, a broad-
band signal is analog.

connectivity - A path for communications signals to flow through. Connectivity exists between
a pair of nodes if the destination node can correctly receive data from the source node at a
specified minimum data rate.

Garbage collection (GC) - The automatic recycling of dynamically allocated memory. Garbage
collection is performed by a garbage collector which recycles memory that it can prove will
never be used again. Systems and languages which use garbage collection can be described as
garbage-collected. Also known as automatic memory management

 111

Global Positioning System (GPS) - A worldwide, satellite-based radio navigation system pro-
viding three-dimensional position, velocity and time information to users having GPS receivers
anywhere on or near the surface of the Earth.

GSM - Global System for Mobile Communications. A second-generation digital cellular radio
standard developed in Europe but widely adopted around the world.

Handheld Markup Language (HDML). A markup language optimized for use in wireless hand
held devices.

Hypertext Markup Language (HTML)- A standard used on the Internet World Wide Web for
defining hypertext links between documents.

integration testing- Type of testing that verifies the interfaces between network components as
the components are installed. The installation crew should integrate components into the net-
work one-by-one and perform integration testing when necessary to ensure proper gradual
integration of components.

middleware- An intermediate software component located on the wired network between the
wireless appliance and the application or data residing on the wired network. Middleware pro-
vides a ppropriate interfaces between the appliance and the host application or server database.

mobility- Ability to continually move from one location to another.

narrowband system- A wireless system that uses dedicated frequencies assigned by the FCC
licenses. The advantage of narrowband systems is that if interference occurs, the FCC will in-
tervene and issue an order for the interfering source to cease operations. This is especially im-
portant when operating wireless MANs in areas having a great deal of other operating radio-
based systems.

Open Database Connectivity (ODBC)- A standard database interface enabling interoperability
between application software and multi-vendor ODBC-compliant databases.

PCS- See Personal Communications Services.

performance modeling- The use of simulation software to predict network behavior, allowing
you to perform capacity planning. Simulation allows you to model the network and impose
varying levels of utilization to observe the effects. Performance Monitoring Addresses per-
formance of a network during normal operations. Performance monitoring includes real-time
monitoring, where metrics are collected and compared against thresholds that can set off
alarms; recent-past monitoring, where metrics are collected and analyzed for trends that may
lead to performance problems; and historical data analysis, where metrics are collected and
stored for later analysis.

Personal Communications Services (PCS)- A spectrum allocation located at 1.9 GHz, a new
wireless communications technology offering wireless access to the World Wide Web, wireless
e-mail, wireless voice mail, and cellular telephone service.

 112

portability- Defines network connectivity that can be easily established, used, then disma ntled.

SQL- See Structured Query Language.

Structured Query Language (SQL)- An international standard for defining and accessing rela-
tional databases.

telecommuting- The concept of electronically stretching an office to a person’s home.

transceiver- A device for transmitting and receiving packets between the computer and the
medium.

WAP - Wireless Access Protocol is the technology that links wireless devices (mobile phones,
pages, PDA's, etc) to the Internet. WAP provides the capability to translate information
downloaded from the Internet into a format that mobile devices can understand.

WML - Wireless Markup Language. Relatively new (1999) programming language similar to
HTML, but with less functionality and a much stricter format. Supports limited graphics
(monochrome bitmaps but no animated GIF's or streaming video).

WMLScript - The wireless version of JavaScript that lets programmers add functionality to
their WML pages. Currently, WMLScript must be saved in a different file than plain WML, so
a single card may have several files associated with it.

XML - Extensible Markup Language. A markup language that can be extended by
defining new data types.

 113

References

Architecture

B. Appleton. Patterns and Software: Essential Concepts and Terminology. 5 May 2001

<http://www.enteract.com/~bradapp/docs/patterns-intro.html>.

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1997.

D. Connolly. Issues in the Development of Distributed Hypermedia Applications.

13 Oct 1999 <http://www.w3.org/OOP/HyperMediaDev>.

Jazayeri, Ran, and Van der Linden. Software Architecture for Product Families: Principles and

Practice. Addison-Wesley, 2000.

P. Hoshka. The Architecture Domain. 20 Nov 2000

<http://www.w3.org/OOP/HyperMediaDev>.

J. Noble and C. Weir. Small Memory Software, Patterns For Systems With Limited Memory.

Addision-Wesley, 2001.

Nokia. Mobile Internet Technical Architecture Overview. White Paper, Nokia Corp. 2000

<http://www.nokia.com/press/background/pdf/mita.pdf>.

S. Schach. Classical And Object-Oriented Software Engineering. WCB/McGraw-Hill, 1999.

Component-Based Software

S. Clemens. Component Software, Beyond Object-Oriented Programming. Addison-Wesley,

1999.

Object Services and Consulting, Inc. Component Software Glossary. 12 Jan 2001

<http://www.objs.com/survey/ComponentwareGlossary.htm>.

D. Sprott and L. Wilkes. Component Based Development, Using Componentised Software.

White Paper, The Forum for Component Based Development and Integration, May 1999
<http://www.cbdiforum.com/report.php3>.

HTML, CHTML, XHTML

M. Altheim and S. McCarron,. XHTML 1.1 - Module-based XHTML. 31 May 2001

<http://www.w3.org/TR/2001/REC-xhtml11-20010531>

 114

M. Claben. XHTML Tag Reference. 19 Mar 2001

<http://www.webreference.com/xml/reference/xhtml.html>.

Compact HTML For Information Appliances. Web Review. 21 Aug 1998

<http://www.webreview.com/1998/08_21/webauthors/08_21_98_1.shtml>.

Compact HTML Tag List. Home.Mono.Com. 21 Apr 2001

<http://home.monyo.com/htmllint/tagslist.cgi?HTMLVersion=Compact-HTML>.

T. Kamada. Compact HTML For Small Information Appliances. 9 Feb 1998

<http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/>.

J. Kyrnin. HTML Tag Library. 28 Apr 2001

<http://html.about.com/compute/html/library/tags/bl_index.htm>.

M. Nic. XHTML Basic Reference, With Examples. 2 May 2001

<http://zvon.org/xxl/xhtmlBasicReference/Output/index.html>

Nokia. Advantages of XHTML for Wireless Data. White Paper, Nokia Corp. 2001

<http://www.nokia.com/press/background/pdf/mar011.pdf>.

Refsnes Data. The Complete XHTML 1.0 Reference. 2 May 2001

<http://www.w3schools.com/xhtml/xhtml_reference.asp>.

Java

G. Cornell and C. Horstmann. Core Java 2. Volumes I and II. Sun Microsystems, 2000.

B. Day. “Develop Wireless Applications Using J2ME.” JavaWorld, Feb 25 2001

 <http://www.javaworld.com/javaworld/javaone00/j1-00-j2me.html>.

T. Ekman and A. Nilsson. Deterministic Java in Tiny Embedded Systems. Lund University,

Sweden, White Paper, 2001
<http://www.artes.uu.se/events/gsconf01/papers/article.pdf>.

M. Hardee. Why Wireless Needs Java Technology. 10 Jul 2000

<http://java.sun.com/features/2000/07/wireless.html>.

T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. 18 Feb 2001

<http://java.sun.com/docs/books/vmspec/html/VMSpecTOC.doc.html>.

MIT Telemedia, Networks And Systems Group. Package java.lang. 18 Feb 2001

<http://tns-www.lcs.mit.edu/manuals/java-1.1.1/api/Package-java.lang.html>.

 115

Sun Microsystems. J2ME Technology For Creating Mobile Devices. White Paper, Sun Mi-
crosystems, Inc., May 19, 2000 <http://java.sun.com/products/cldc/wp/KVMwp.pdf>.

J. White, “Big Plans For J2ME.” JavaPro, Vol 5, No. 5, May 2001, pp. 20-32.

Memory

A. Clem. How Memory Works. 15 May 2001

<http://xtronics.com/memory/how_memory-works.htm>.

EventHelix. Byte Alignment and Ordering. 15 May 2001

<http://www.eventhelix.com/RealtimeMantra/ByteAlignmentAndOrdering.htm>.

Kingston Technology. What is Memory? 15 May 2001

<http://www.kingston.com/tools/umg/newumg01a.asp>.

C. Levin. “Mobile Memory”. PC Magazine Online. Dec 19, 1995

<http://www.zdnet.com/pcmag/issues/1422/pcm00016.htm>.

J. Newmarch. System Software Memory Overview. Nov 19, 1997

<http://jan.netcomp.monash.edu.au/ssw/memory/overview.html>.

Symbian, Ltd. Memory Management in Quartz v6.0. Technical Paper, Symbian, Ltd. 2000

<http://www.symbiandevnet.com/techlib/techcomms/techpapers/papers/v6/quartz/>.

J. Tyson. How Memory Works. 8 May, 2001
 <http://www.howstuffworks.com/computer-memory.htm>.

Xanalys. The Memory Management Reference. 8 May 2001

<http://www.xanalys.com/software_tools/mm/>.

Mobile

D. Connolly. Mobile Code. 9 Dec 1996 <http://www.w3.org/MobileCode/>.

Ericson, Inc. Mobile Applications Initiative. 20 May 2000
<http://www.mobileapplicationsinitiative.com>.

Mobile Computing Application Development Tools and Strategies. Mobile Info. 11 Apr,

2001 <http://www.mobileinfo.com/application_dev.htm>.

 116

Mobile Computing Software Standards. Managing Change. 12 Jan, 2001
<http://www.managingchange.com/mediums%5Cmobile%5Csoftware.htm>.

Motorola. Wireless Application Development. White Paper, Motorola, Inc. 2000

<http://www.motorola.com/MIMS/MSPG/spin/library_files/wad.pdf>.

3G Newsroom. 4 Apr, 2001 <http://www.3gnewsroom.com/>.

Synchrologic. The Future of Enterprise Mobile Computing. White Paper, Synchrologic, Inc.

2000 < http://www.synchrologic.com>.

Synchrologic. The Future of Enterprise Mobile Computing. White Paper, Synchrologic, Inc.

2000 < http://www.synchrologic.com>.

Wireless Telecom Glossary. Cellular Network Perspectives. 3 Jan, 2001

<http://www.cnp-wireless.com/glossary.html>

Oracle

GSI. Oracle Lite Object Kernel API Reference, Release 4.0. GSI. 12 Apr, 2001

<http://www-wnt.gsi.de/oragsidoc/doc_8i_lite/olokref/html/apitoc.htm>.

Oracle Mobile. Oracle Corporation. 10 Apr, 2001 <http://www.oracle.com/mobile/>.

T. Dyck, “Oracle8i Lite Takes Fresh Web Apps on the Road”, eWEEK October 11, 1999

<http://www.zdnet.com/products/stories/reviews/0,4161,2349507,00.html>.

Tcl

S. Ball, Web Tcl Complete, McGraw-Hill, 1999.

European Southern Observatory, Data Management Division. Tcl and C++ Utilities Package

Programer’s Guide. 1998 < http://archive.eso.org/skycat/docs/tclutil/>.

J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley. 1994.

J. Radajewski. The Beowulf Monitoring System. 2 Jun 2001.

<http://www.sci.usq.edu.au/staff/jacek/bWatch/>.

SourceForge. The Tiny Tcl Home Page. 13 Jun 2001 <http://tinytcl.sourceforge.net>.

Tcl Developer Exchange. The Tcl Developer Site. 3 Mar 2001 <http://www.scriptics.com>.

The Tcl Newsgroup <comp.lang.tcl>.

 117

K. Waclena. Introduction To The Tcl Programming Language. 3 Mar 2001

<http://www.lib.uchicago.edu/keith/courses/tcl/>.

B. Welch, Practical Programming in Tcl and Tk, Prentice Hall PTR 3 rd ed., 2000.

Miscellaneous

J. Alger. “Software Review - Component Workshop and OODLs” MacTech. Jul 92

<http://www.mactech.com/articles/frameworks/6_4/Component_Workshop_Alger.ht
ml>.

CC/PP. 30 Mar 2001 <http://www.ccpp.org>.

Client and Server Side Scripting. 24 Apr 2001. <http://www2.fyrisskolan.uppsala.se>.

