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ABSTRACT 

In designing today’s SAR, MTI, and radar tracking systems, it is often necessary to perform 

extensive simulations to test the viability of various radar designs.  For these simulations, one must be 

able to effectively reproduce how radar sees a target.  Radar perceives objects by transmitting 

electromagnetic pulses and observing the returning echo.  By timing the lapse between pulse and echo, 

and by measuring the apparent Doppler frequency shift, radar distinguishes targets from the surrounding 

noise.   This range/Doppler information the radar sees, or “video phase history”, is the raw data that must 

exist before any further radar signal processing may be performed.  

In order to simulate video phase history, one must model both the radar and its target.  The radar 

model requires simulating physical properties of the transmitted electromagnetic pulses.  The target model 

requires simulating how the radar pulses reflect or “scatter” off the target back to the receiver.  A 

sufficient sampling of scatter points on the target’s surface must be achieved in order to distinguish 

various target characteristics.  One must model how the radar pulses reflect off each scatter point and 

determine whether it is “shadowed” by some other part of the target.  Finally, one must model the yaw, 

pitch, roll, and velocity of each scatter point to simulate the target’s motion relative to the radar. 

For my project, I propose to develop a simulation to model radar returns.  This simulation will 

model both the radar and its target.  Of primary interest, however, is designing the simulation such that a 

radar engineer may rapidly model complex geometric targets such as an airplane, missile, or ship.  To 

achieve this, a library of basic geometric objects, such as cones, spheres, frustums, facets, and cylinders, 

will be created using object oriented programming techniques. Each object will “know” how to 

“uniformly sample” its scatter points, determine its reflectivity, and identify if a scatter point is shadowed 

by other parts of the target.  Each object will have a yaw, pitch, roll, and XYZ velocity associated with it.  

Using techniques from “rendering”, each object’s dimensions and orientation will be easily definable by 

the user.  Once the radar and targets are defined, their characteristics will be passed to a video phase 

history engine, which simulates the target’s range & Doppler, as, seen by the radar.  The video phase 

history will then be analyzed using simple radar signal processing techniques. 
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1 CHAPTER I 
INTRODUCTION 

Today’s modern radar systems are as complicated and as expensive to build as ever.  Radar 

systems are expected to handle a wide variety of tasks, from tracking ships on the open ocean to detecting 

moving targets on land to providing advanced surveillance for ground combat troops.  They are designed 

with the latest, most technologically advanced microprocessors, digital signal processors, and FPGAs.  

The algorithms that process and enhance radar imagery are mathematically intensive and difficult to 

understand and analyze.  Building a radar system from the ground up can prove to be a very challenging 

and expensive proposition, especially if the algorithms, characteristics, and capabilities of the radar are 

not fully understood.  Prior to actually constructing the radar system, it is often desirable to simulate how 

various radar configurations or signal processing algorithms perform.  While various simulations may be 

designed to model different aspects of the radar, the simulation addressed in this paper explores how 

electromagnetic energy from the radar is reflected off targets, collected, and processed to create range-

Doppler images of the target. 

Simulating radar signatures from arbitrarily shaped targets is a desirable capability to have for 

many different reasons.  Often, when building a new radar, there is a limited amount of real measured 

target data available.  Even if it is possible to use existing radar systems to capture and record target 

signatures, actually acquiring that data through flight tests is expensive.  Data describing the target 

signature is often needed to perform trade studies, to predict system performance, or to evaluate how to 

best utilize funds.  Once the radar is built, it is not a straightforward task to modify the radar’s design.  

With a software model, however, it is relatively painless to modify radar characteristics or test the 

performance of various algorithms against different targets before the algorithms are made permanent.  In 

lieu of expensive flight tests, software models may even be used to help perform system validation and 

verification.  Instead of trying to arrange for different ships, planes or ground vehicles to perform 

maneuvers during different weather conditions, the systems engineer can simply input the appropriate 

parameters into the simulation and observe how the system performs. 
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When dealing with mathematical models the question always arises as to how close the model 

matches the real world.  Some models, like those that attempt to predict the weather, are only so accurate 

due to the chaos inherent to nature.  Other mathematical models, such as Newton’s laws of motion, yield 

highly accurate predictions, assuming of course the system is kept within certain bounds and conditions.  

The mathematical models used to simulate radar signatures of targets, some of which are discussed in this 

paper, have been shown to be highly accurate.  Synthetic target models can closely match features found 

in real measured data.  While such models are numerically intensive, with the advent of faster, more 

powerful computers, they are capable of operating at a higher degree of fidelity and still execute within an 

acceptable period of time.  This enables freedom to experiment with a wide array of targets, 

configurations, and scenarios with a high degree of confidence in the accuracy of the results. 

Historically, in designing software simulations of radar systems, much thought is invested in the 

algorithmic and mathematical aspects of the model.  Rigid proofs are used to validate the mathematics 

and much effort is spent in verifying the algorithms.  When it comes to engineering the software 

framework that houses the algorithms, however, not much thought is given.  Often simulations consist of 

disjoint code that seems to have been translated directly from the backs of napkins and scratch paper.  The 

moniker “spaghetti code” aptly describes the difficulty in trying to follow the program thread.  Even if a 

structured or object oriented programming language is used, the engineer often fails to follow sound 

software engineering principles, negating the very benefits and advantages afforded by structured or 

object oriented design. 

There are many advantages to practicing software engineering principles when architecting 

simulations or analysis tools.  First and most important is the savings in time and money.  While slapping 

together a simulation without investing in preliminary design may save time and money in the short run, 

those cost savings are quickly eaten by the cost of debugging, rework, and maintenance.  A solidly 

constructed program may require more effort up front; however, the advantages of code reuse and 

readability are well worth the initial investment.  If the original author of the simulation is no longer 

available, a well-designed program can be more easily understood and adopted by someone else.  All too 
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often, when an engineer leaves a project, the simulations and programs he creates are discarded or have to 

be rewritten from scratch because they are too difficult to understand and maintain as is.  For larger, more 

complicated simulations, adopting established software methodologies allows for multiple developers to 

work in parallel.  If interfaces are well defined integration is seamless.  Another benefit of a well-

constructed simulation is that it may serve as the foundation for the software used in the real-world 

system.  Given a solidly constructed model or simulation, deriving the system software may be as simple 

as translating the simulation code into the native programming language used in the system.  If no 

software methodologies are used, however, the system software inherits the maintainability, usability, and 

readability problems of the poorly designed simulation. 
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2 CHAPTER II 
BACKGROUND 

2.1 Object Oriented Programming 

The following sections provide a brief introduction into the history and basic concepts of object 

oriented programming.  The benefits afforded by OO in the design of the simulation are explored and the 

underlying philosophy used in developing the simulation is presented. 

2.1.1 Evolution of Object Oriented Programming 

In the 1960’s, engineers were designing small, relatively simple programs.  The limitations of the 

hardware and available programming languages limited the complexity and the potential achievable by 

software.  The discipline of software engineering was still in its infancy and engineers relied on their 

creativity as opposed to any methodology to design software.  Even though the programs were neither 

large nor complex by today’s standards, developers still had difficulty remembering all the data needed to 

develop, debug, and maintain their code.  Unfortunately, this led to “spaghetti code” replete with 

“GOTO” statements, that was both difficult to build upon and a nightmare to maintain.  Clearly new 

software methodologies and greater levels of abstraction were required to manage the increasing levels of 

software complexity (Wilkie, 1993). 

To address this increasing complexity, in the 1960s and 1970s, higher-level languages like 

COBOL and FORTRAN were developed.  A new style of software engineering was developed known as 

modular or structured programming.  In the 1970’s, Al Constantine and Ed Yourdon devised a method of 

developing software that used the function as its primary building block.  Known as structured analysis 

and design, this methodology allowed engineers to organize software routines by their functionality.  

Structured analysis was very good at capturing the functionality of organizations and modeling scientific 

and mathematical algorithms, however it was sorely deficient at modeling and managing the data itself 

(Wilkie, 1993). 
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With the development of structured design, the bar was raised for the development of even more 

complex and advanced software.  New challenges such as coupling and cohesion became the limiting 

factor in software development.  Coupling refers to the dependence of one section of code on another 

section and/or data storage technique.  Cohesion refers to how well a set of code and its associated data fit 

together.  With structured programming, data is not managed and an understanding of the algorithms 

internal to a function is required.  When modifying a function, a developer must take special care as not 

adversely affect other routines that utilize the function.  All of these factors contribute to poor cohesion 

and coupling, and hence the need for an even higher level of abstraction and a more advanced software 

engineering methodology (Wilkie, 1993). 

The problems posed by coupling and the need for strong cohesion within a program was 

addressed with the advent of object-oriented programming.  OOP attempted to solve these problems 

through the following techniques: 

1. Encapsulation 
2. Inheritance 
3. Polymorphism 
4. Composition 
 
The following sections provide a brief introduction to each of these concepts.  They document 

how each OOP concept was leveraged to provide for a cohesive and uncoupled simulation design.  

Whether the techniques were successful or not is evaluated and a critique of their usefulness in creating 

the simulation program is made. 

2.1.2 Encapsulation 

An object is a collection of data consisting of properties (attributes) and methods (functional 

logic).  The properties define the state of the object and the methods describe the object’s behavior.   For 

example, Figure 1 illustrates how an object may be used to represent a cylinder.  The cylinder’s radius 

and height are properties specific to the cylinder.  Properties can be primitive data types like integers, 

characters, or floating point numbers; or they can be other objects like matrices, cylinders, spheres, or 

even complex shapes like missiles, ships, or airplanes.  Objects composed of other objects is known as 
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aggregation.  Aggregation is especially useful in OOP where groups of objects are contained within larger 

objects.  For example, in the simulation, the target object contains a collection of shape objects like 

cylinders, cones, spheres, and facets, which taken together define the target’s geometry. 

 
Figure 1.  Encapsulation for a Cylinder Object. 

 
The object’s methods describe the behavior of the object.  Methods are typically used to instruct 

an object to perform some action, calculation, or data manipulation.  In Figure 1, for example, the 

cylinder’s draw method is used to plot the cylinder on the screen and the rotate method is used to rotate 

the shape about the X, Y, or Z-axis.  Two different types of methods can be associated with objects.  The 

first type, called interface methods, are the means of communication between the object and the rest of 

the program.  It is through interface methods that a user gets, sets, or modifies an object’s properties.  The 

second kind of method, known as internal methods, are hidden within the object itself and need only be 

understood by the object's developer.  In fact, external users of an object should not even know of the 

existence of the internal methods within an object.  By limiting users of the object to interface methods, 

the overall complexity of the software is greatly reduced.  Hiding internal methods and restricting object 

access to the interface methods has the added benefit of “shielding” other objects from any internal design 

changes to the object.  This limits the number of knock-on effects to other parts of the program and limits 

the impact of future modifications to an object's algorithms or data structures.  Finally, by limiting the 
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communication and interaction of objects to interface methods, the amount of coupling within a program 

is greatly reduced (Wilkie, 1993). 

With encapsulation, external accesses to internal properties within an object are restricted to the 

object’s interface methods.  In this way, developers strictly control what information flows in and out of 

an object.  Internal properties are protected from being set to invalid values and data passed to the object 

is validated before it is used in calculations or logic decisions.  With encapsulation, the developer may 

even choose to hide certain object attributes from the user.  This concept of data hiding, or data 

abstraction, further reduces the amount of coupling and complexity within a program.  The user need not 

be concerned with how data is stored within the object, but only with how to access the data through the 

object’s interface methods. 

2.1.3 Inheritance 

Sometimes objects have similar properties and methods that have just a few minor differences.  

Instead of creating two separate classes from scratch to represent similar objects, inheritance may be used 

to share the commonality between similar but distinct objects.  For example, a cylinder, facet, and cube 

all represent different geometric shapes.  They are similar in that each shape has a orientation, shape 

coordinates, and can be drawn or rotated.  They are different, however, in that the cylinder's geometry is 

defined by its radius and height, the facet by its three vertices, and the cube by its length, width, and 

height.  With inheritance, the similarities of the distinct shapes can be grouped together to form a “base-

class” from which more specific “subclasses” are derived to handle the intrinsic differences between the 

different shapes.  In Figure 2, for example, “Geometric Shape” is defined as the base-class.  This class 

contains properties that define the shape’s location and coordinates along with the methods used to draw 

or rotate shapes.  In creating the cylinder, facet, and cube, it would be useful to not have to rewrite the 

location and coordinate properties and the draw and rotate methods for each of the different types of 

shapes.  With inheritance, these common properties and methods can be derived or “inherited” from a 

common base-class.  The properties and methods defined in the base class are made available for use in 
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any derived class.  In our example, the cylinder class would “borrow” the draw methods of the shape class 

and the facet class would borrow the coordinates of the shape class to store the location of its sample 

points.  To handle the differences between the various shapes, properties and methods particular to a 

shape, such as the radius and height of the cylinder; the three vertices of the facet; and the length, width, 

and height of the cube, are defined within the sub-classes themselves. 

Sometimes with inheritance the same methods defined in the base-class are redefined in the sub-

classes.  In this case, the methods declared in the lower level base-classes override their inherited 

counterparts.  From the example in Figure 2, if a draw method were added to the cylinder class, it would 

take precedence over the draw method inherited from the shape base-class.  In implementing the code, the 

two draw methods would be different, defining different actions to undertake when the draw method is 

invoked for a generic shape versus a cylinder, which must be drawn in a unique manner.  In this way, 

generic methods from a base-class may be overridden to handle special cases when derived classes need 

to be handled differently.  When determining which method takes precedence, the general rule is to search 

the class hierarchy from the bottom up for like named methods.  Once like named methods are found, the 

search terminates and the first method found is used. 

 

Figure 2.  Simple Example of Inheritance. 
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The inheritance described in the previous section, where sub-classes inherit methods and 

properties from base-classes, is known as single inheritance.  Multiple inheritance allows a class to inherit 

from more than one base-class.  For example, in multiple inheritance the cylinder and cube might inherit 

properties from not only a shape base-class, but also from a “materials” base-class which defines 

properties and methods for different types of material like wood, metal, or glass.  The OOP community is 

split as to whether multiple inheritance is a good thing.  Some OOP environments, such as C++ and 

Smalltalk, allow multiple inheritance.  Other languages such as Java do not. 

The primary concern with multiple inheritance is that it adds unnecessary complexity.  For 

example, multiple inheritance must resolve the situation where similar named methods or properties are 

inherited from two different base-classes.  Another potentially problematic situation is when a sub-class 

inherits from two different base-classes that in turn inherit from the same parent class.  In this case the 

sub-class inherits twice from the same grandparent class (once from each parent).  The programming 

language or case tool used must be able to resolve this type of problem and provide some type of solution 

(Dogru, 2003). 

In the design of the simulation, multiple inheritance was not used due to the added complexity it 

introduces.  Even though it is supported in MATLAB, whatever perceived benefit it offers is more than 

offset by complexity it adds. 

2.1.4 Polymorphism 

Another key feature of object-oriented programming is a behavior known as polymorphism.  

Polymorphism is the ability of an object to automatically select the correct method to invoke at run time.  

If the same method is described for a series of different sub-classes, which inherit that same method from 

a common base-class, then without checking the type of an object the correct method can be 

automatically invoked.  The concept of polymorphism is best understood through example.  With 

polymorphism, the same method must be defined in the base-class and any derived sub-classes.  Within 

the sub-classes, the method is redefined to follow some unique logic or algorithm specific to that sub-
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class.  For example, in Figure 3, a method to compute the intersection point between a vector and a shape 

is created.  Because vector-shape intersection computations are unique for different shape types, specific 

intersection methods must be written for specific shapes like cubes, facets, or cylinders.  Without 

polymorphism, to determine whether to invoke the cylinder, facet, or cube intersection method, a series of 

if-then or case statement logic must be used.  With polymorphism, the intersection method may be 

invoked on any shape that inherits from the generic shape base-class.  Based on the specific sub-class the 

shape belongs to, the proper intersection method is automatically invoked (Dogru, 2003). 

 

Figure 3.  Polymorphism (Dogru, 2003). 
 

Another form of polymorphism that is especially useful is function overloading.  In function 

overloading, the parameters included in a method’s argument dictate which code a method executes.  For 

example, two different “location” methods might be defined for a cylinder object.  The first location 

method might accept the cylinder's sample points as input, from which the location of the cylinder is set.  

The second location method might accept the origin of the cylinder as input, from which the location of 

the cylinder is set.  It is clear that with overloading, both location methods position the cylinder about 

some fixed point, however they accomplish the task using different inputs and different calculations. 

2.1.5 Composition 

Encapsulation, inheritance, and polymorphism are all powerful object oriented programming 

techniques used to represent complex relationships between classes.  Another powerful tool available for 
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describing class relationships is composition.  With composition, classes are contained within other 

classes.  While inheritance provides for a mechanism of assuming ownership of a duplicate set of 

methods, composition provides a means of representing a part-whole relationship between classes. 

Inheritance represents the “is a” relationship between classes.  Composition represents the “has a 

relationship between classes.  For example, in the simulation, the target class “has a” combination of 

different shapes such as cylinders, facets, and cones that define the target’s geometry.  As discussed in 

previous sections, the cylinder “is a” shape and the facet “is a” shape, hence they exhibit the relationship 

described by inheritance (Dogru, 2003). 

2.2 Object Oriented Programming Languages 

Several different programming languages offer OOP capabilities.  Some of the more popular 

languages include C++, Smalltalk, JAVA, and MATLAB.  Each language offers key object oriented 

ingredients including encapsulation, inheritance, and polymorphism.  In selecting the language for 

designing the simulation program, the following factors were considered.  First, the programming 

language must perform complex mathematical operations quickly and easily.  Second, the language must 

be widely accepted within the systems engineering environment at Raytheon.  Third, the language needed 

to have built in functions and data types to handle signal processing, matrix and vector operations, and 

complex numbers.  Finally the language must provide the ability to easily generate plots, images, and 

movies of the target.  In Table 1, the ability of some common OOP languages to meet these criteria is 

provided. 

Table 1. Comparison of Object Oriented Programming Languages. 

Programming Language Features C++ Java MATLAB 
Encapsulation Yes Yes Yes 
Single Inheritance Yes Yes Yes 
Multiple Inheritance  Yes No Yes 
Pure Virtual Functions Yes No No 
Operator Overloading Yes No Yes 
Function Overloading Yes No Yes  
Templates Yes No No 
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I/O Capability Yes Yes Yes 
Relative Execution Speed Fast Slow Slow/Fast 
Built in Mathematical Library Third Party Third Party Yes 
Built in Signal Processing Library Third Party Third Party Yes 
Built in Plot and Graphing Capability Third Party Third Party Yes 
Matrix and Vector Support Third Party Third Party Yes 
 

Of all the OOP languages listed above, MATLAB seemed to be the best fit for creating the 

simulation program.  It is specifically tailored to handle complicated algorithms, with a large library of 

mathematical functions and tools.  Its signal processing toolbox provides the algorithms needed to 

simulate and analyze the radar returns from the target model.  MATLAB also provides built in data types 

for handling complex numbers, vectors, and matrixes, very useful features to have when dealing with the 

ray tracing, geometrical transformations, and vector manipulations that will be required.  MATLAB is 

also widely used by systems engineers and is historically the language of choice for creating 

mathematical simulations.  Finally, MATLAB contains a broad array of tools for plotting graphs, 

displaying images, and even creating AVI movies, all useful features to have for debugging, verifying, 

validating, and presenting the simulation program. 

While MATLAB meets the stated requirements, there are some risks and concerns.  First, of all, 

MATLAB is an interpreted language, meaning the source code is fed into the MATLAB interpreter which 

carries out the specified actions.  This is slow compared to compiled code.  With compiled programs, the 

source code is first translated into the machine code equivalent before it is executed.   If speed is a critical 

requirement to the simulation program, a compiled language like C++ is probably a better choice. 
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Figure 4.  Interpreted vs. Compiled Programs (Horton, 1998). 
 

Another concern with MATLAB is its ability to conform to OOP methodologies.  Typically, 

MATLAB is used as a structured programming language.  It was not originally capable of doing 

encapsulation, inheritance, and polymorphism.  These features were only recently added to MATLAB, 

and whether or not Mathworks was successful at making MATLAB OO capable is a legitimate concern.  

One of the primary goals of this thesis is to explore how well MATLAB is capable of supporting OOP.  

In the conclusion of this report, the successes and/or failures of MATLAB as an OOP language is 

evaluated. 

2.3 Object Oriented Software Engineering 

While the concepts of encapsulation, inheritance, polymorphism, and composition make OOP a 

powerful, versatile, and useful tool for developing simulations, without the proper infrastructure, 

techniques, and philosophies in place, OOP does not deliver upon the promises of improved 
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maintainability, usability, and affordability.  Indeed, poorly designed object oriented code is less desirable 

to have than structured (or even structured) code due to the added complexity.  A parallel may be drawn 

to that of a racing car vs. an economy car.  While a poorly designed economy car is not safe to drive, a 

poorly engineered racing car is even less desirable due to the higher speeds and more demanding 

conditions it is designed to operate under. 

When designing software, regardless of whether OO or structured programming is used, it is 

critical that the software is engineered and designed properly before coding is begun.  Contrary to popular 

belief, the majority of time spent in developing software should not be spent in the coding phase, but 

rather in the design phase.  By employing proper software engineering techniques before any coding is 

performed, the impact on the cost of maintenance, debug, and upgrades is greatly reduced.   It is critical 

that the requirements, risks, and tradeoffs are fully understood to mitigate future problems, bottlenecks, or 

misunderstandings.  Since at the design phase, the foundation for the software is established and most of 

the parameters are set, it is important that sufficient time and analysis be spent in order for the subsequent 

coding and maintenance to flow as smoothly as possible (Dogru, 2003). 

Design

Coding

Maintenance

Design
Coding
Maintenance

 

Figure 5.  Effort Required for Different Development Activities (Dogru, 2003). 
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In the following sections, various methods of OO software engineering are introduced and 

applied to the creation of the simulation.  Since the simulation is scientific and mathematical in nature, the 

techniques and methods are tailored to address the algorithmic concepts required. 

2.3.1 Use Case Analysis 

Use case diagrams provide a graphical description of the system definition for the customer.  

While use case diagrams have the capability of providing procedural level details, they are kept at a 

higher level so as to only convey the highest level functionalities or capabilities of the system.  In the 

diagram, entities external to the system are graphically represented by external actors.  System 

capabilities are graphically represented by ovals, with each oval corresponding to a different system 

functionality under the capability.  The interactions between the actors and the system functionalities are 

represented within the use-case diagrams by connecting the various actors with the various system 

functionalities.  Specific details related to the use case need not be addressed or explained in the use-case 

diagram as they are addressed in more specific “interaction diagrams” such as collaboration and sequence 

diagrams (Dogru, 2003). 

 

Figure 6.  Setup Simulation Use Case Diagram. 
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The use case diagrams created for the simulation program are shown in Figure 6 and Figure 7.  

Figure 6 shows the capability of the simulation to build the radar, airplane, and target.  Figure 7 shows the 

capability of the simulation program to create IQ data (how the radar sees the target), create A & B scans, 

and create a movie of the target as it is in motion.  For each of these capabilities, there is an external 

interface between the simulation and an external actor, the “systems analyst”, who serves not only to 

provide inputs to the simulation, but also to evaluate its output results. 

 

Figure 7.  Simulate Use Case Diagram. 
 

2.3.2 Interaction Diagrams 

Interaction diagrams map out the dynamic interactions between objects.  They are meant to 

convey the run-time behavior of objects, establishing the order in which messages are passed back and 

forth.  In real-time software, interaction diagrams are useful for establishing timing constraints.  For the 

simulation program, interaction diagrams were useful in establishing the order of events required to 

correctly simulate the real world behavior.  Interaction diagrams may be conveyed using either sequence 

or collaboration diagrams. 

For collaboration diagrams the various objects are represented as nodes.  Arrows are drawn from 

one node to another, representing the flow of information.  Attached to each arrow is the name of the 

 16



event or method that is triggered by the calling object (on the object being called).  It should be noted that 

drawing an arrow from object A to object B represents object A accessing one of object B’s  “methods”.  

For example, in Figure 8, an arrow titled “Pick-Up” is drawn from the caller to the phone object, 

representing the caller using the phone’s “pick-up” method (which is inherent to the phone class).   

Arrows within a collaboration diagram are numbered to convey the order in which events occur.  In this 

way, the sequence of events may be traced throughout time (Dogru, 2003). 

 

Figure 8.  Example Collaboration Diagram. (Dogru, 2003). 
 

Sequence diagrams convey the same information as collaboration diagrams in a slightly different 

manner.  For sequence diagrams, all relevant objects are listed horizontally across the top of the diagrams.  

Vertical lines are dropped from each object.  Messages sent between objects are drawn as horizontal 

arrows pointing from the sending object’s line to the receiving object’s line.  The order of events 

progresses vertically, meaning event timing sequences can be determined by “reading” the diagram from 

top to bottom (Dogru, 2003). 
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Figure 9.  Example Sequence Diagram. (Dogru, 2003). 
 

One of the sequence diagrams created for the simulation program is shown in Figure 10.  It 

illustrates the methods that are invoked and the various interactions required to build targets from a 

library of shapes.  From the diagram, to build a target the user first creates a shape, which has coordinates, 

normal vectors, surface areas, and a position associated with it.  The shape is rotated and shifted to the 

desired location and added to the target.  The target, and the shapes that compose it, can then be rotated as 

a whole to position the target for the start of the simulation run. 
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Figure 10.  Sequence Diagram for Creating a Target. 

 

2.3.3 Class Diagrams 

The class is the fundamental structural unit used in the development of object-oriented software.  

The class diagram is the primary tool used for establishing class relationships, structures, and interfaces.  

In the diagram, each class is represented graphically by a rectangular box.  Each rectangular box is 

divided into an upper and a lower section.  The upper section lists the properties inherent to the class.  The 

lower section documents the methods used to establish an interface to the class and to instruct the class to 

perform some service or action (Dogru, 2003). 

Different class relationships such as inheritance, association, and composition are represented 

through graphical interconnections between the various rectangles in the diagram.  Inheritance is typically 

shown by drawing a line from the parent class to the child class, with the parent class having a small 
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triangle present at its connection point.  For composition relationships, the connecting line drawn between 

rectangles is terminated by a diamond at the composing class’s connection point.  For association 

relationships, a line is drawn between the two associated classes.  The associative relationship may also 

have a direction, name, pluralities, and/or roles assigned to it (Dogru, 2003). 

The key classes created for the simulation include those shown in Figure 11.  The target class 

defines high level properties of the target, including its motion and an array of geometric shapes that 

comprise it.  The target interface contains methods that set the target’s motion, add and remove shapes, 

and get or set various data about the target’s position.  The shapes that compose the target are themselves 

objects.  Each shape contains properties such as an array of coordinates, normal vectors, and surface 

areas.  Methods associated with shapes include draw, rotate, and shift.  Various methods exist to compute 

normal vectors, surface areas, coordinates, intersection points, and specular reflection for various scatter 

points on a shape.  Many of these methods and properties are inherited by children including spheres, 

frustums, facet’s, cylinders, and circular discs.  These children overload methods defined by their parent 

shape class based on the type of shape they represent. 

To create video phase history, the “IQ generator” class interacts with the target, airplane, and 

radar.  The airplane object defines the relative motion of the aircraft (which carries the radar) relative to 

the target.  The radar object defines the unique characteristics of the radar such as its wavelength, PRF, 

and pixel spacing.  Once the IQ generator creates video phase history, the video processor uses the data to 

generate A-Scans or range-Doppler maps of the target.  These images can be fed to the movie object to 

create movies of the target as it is seen by the radar over time. 
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Figure 11.  Class Diagram for Simulation. 
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3 CHAPTER III 
THE BACKSCATTERING BEHAVIOR OF TARGETS 

Before development of simulation algorithms can be started, a general understanding of the 

backscattering behavior of targets must be achieved.  The following sections provide a brief overview of 

how a target reflects radar energy. 

3.1 General Scatterer Classes 

Man-made targets such as missiles, ships, airplanes, and ground vehicles consist of a wide array 

of different scatters with a large variety of backscattering behaviors.  Extensive work has been done over 

the past few decades trying to model this behavior; usually by assuming the target consists of a set of 

idealized features or “geometric primitives” such as facets, spheres, cylinders, and other distinguishing 

shapes.  A sampling of the different type of wave scattering that occurs is shown in Figure 12 and Figure 

13.  A brief discussion of the various phenomena is provided in the following subsections. 

 

Figure 12.  Different Type of Electromagnetic Wave Scattering (Kim, 2003). 
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Figure 13.  Contributors to Radar Cross Section (Kim, 2003). 

 
  For the purposes of this report, and in the design of the simulation, the only scattering 

phenomena that will be mathematically explored is that of specular scattering.  More extensive treatment 

of the other phenomena is available in numerous other articles and books and is outside the scope of this 

report.  Having limited the simulation to specular scattering, however, does not mean the simulation 

cannot be adapted and modified to account for other phenomena.  On the contrary, by architecting a 

strong framework for the simulation program using object-oriented techniques, it is well suited for future 

growth to accommodate other types of scattering phenomena. 

3.1.1 Scattering due to Discontinuities 

Discontinuities refers to those scatters whose effective extents are relatively small in terms of the 

radar’s wavelength so that they essentially act as fixed point scatters.  Some examples of discontinuities 

on targets include a bolt on the bulkhead of a ship or the edge of a flat plate on a missile fin.  In general, 
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discontinuities may be treated as a point scatterer, meaning its return will be well focused within the range 

and Doppler bins corresponding to its actual physical location.  Another common property of 

discontinuities is that their returns are relatively weak in comparison to other features from a target.  

Because their returns are typically 20dB or 30dB below those from stronger target features, they are 

difficult to detect in target images.  It is safe to assume that if one were to inspect a SAR image of a 

ground vehicle, that most likely none of the responses would come from discontinuities (Rihaczek, 1996). 

3.1.2 Scattering due to Smooth Surfaces 

Smooth surfaces refer to structures such as flat plates on the deck of an aircraft carrier or the 

rounded fuselage on an aircraft.  In the case of the flat plate, a huge return, commonly referred to as a 

specular flash, occurs when the plate is oriented at its broadside aspect.  The primary concern with 

specular flashes is that they can be so strong as to drown out other features of the target.  In reality, 

however, specular flashes seldom occur since they are only generated within a small angular sector about 

perpendicular incidence (Rihaczek, 1996). 

Specular flashes are typically a concern when dealing with rounded surface.  Unlike the flat plate, 

with curved surfaces, as the aspect angle changes the effective point of return shifts along the surface in 

order to maintain perpendicular incidence.  Specular flashes from curved surfaces, however, are generally 

less severe than flat plates since the curvature of the surface restricts the surface area that effectively 

generates the flash.  In summary, smooth surfaces do exhibit the problem of specular flash, however they 

are observed rarely enough as to not pose a serious threat (Rihaczek, 1996). 

3.1.3 Scattering due to Corners 

Corner reflectors refer to shapes that are similar to the trihedral, whose three sides are 

perpendicular to one another.  A trihedral acts as a triple bounce reflector, with the unique property that 

the effective phase center is at the corner point.  This means that the corner reflector acts as a strong, fixed 

point reflector, whose strength approaches that from a flat plate at perpendicular incidence.  In reality, 

shapes in man-made targets often due not conform to that of the ideal trihedral.  In ground vehicles, 
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dihedral corners often act as double bounce reflectors; however, their returns are generally weak save for 

an incidence perpendicular to the axis of the dihedral.  In reality, corner reflectors on targets are a poor 

approximation and can only be interpreted as irregular corners that trap incoming waves in a complicated 

manner that cannot be described by multiple-bounce reflections (Rihaczek, 1996). 

3.1.4 Scattering due to Regular Cavities 

Cavity type reflectors are prevalent in man-made targets.  Examples of cavities include the ducts 

within the engine exhaust of an airplane and the cup shaped wheel of an armored vehicle.  Ray-tracing 

techniques, which are introduced in this paper, can provide a feel for the multiple bounces that occur 

within the cavity.  The combined return from the cavity should contain a band of Doppler frequencies as 

defined by the width of the cavity.  Since the cavity has depth, range delays will also be introduced to the 

various components of the radar return.  In general, the return from a cavity will be spread in range and 

Doppler depending on the size of the cavity and the aspect angle under which it is viewed (Rihaczek, 

1996).  While multiple bounce responses due to cavities are not addressed in this paper.  The simulation 

foundation, with its ability to perform elementary ray tracing, can be easily expanded to extend the ray 

tracing to occur over multiple bounces off the target. 

Another class of cavities that should be mentioned are those that are irregular.  These types of 

cavities trap the wave before backscattering it, yet are of such complicated design that the backscattering 

cannot be described by multiple bounces.  Unfortunately, this type of scattering can occur quite often in 

targets and cannot be adequately analyzed using ray tracing techniques.  An example of such an irregular 

cavity includes the overhang of the turret on the deck of a tank.  These irregular cavities pose problems 

for target identification, due to the fact that the phase mismatches introduced by the dispersive properties 

of the cavity are often so large as to produce spurious responses that can fall anywhere within or even 

outside of the vehicle boundaries (Rihaczek, 1996). 
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3.1.5 Traveling Wave Returns 

For a large portion of a target, the radar wave runs along the surface of some feature and is 

reflected at the features end-point.  This class of radar returns is often referred to as traveling wave 

response.  As an example, consider a rocket engine exhaust.  The radar wave enters the duct, and 

neglecting the other forms of scattering mentioned so far, travels along the inside of the exhaust and is 

reflected at its end.  Part of the wave may again be reflected back along the exhaust and be backscattered 

at its point of entry.  The wave may be reflected and backscattered numerous times before its energy is 

exhausted and too weak to be detected (Rihaczek, 1996). 

One interesting phenomena of traveling waves is that they can illuminate features that appear to 

be shadowed optically.  For example, features on the front of a ship's deck that are shadowed optically by 

the mast, may become illuminated due to traveling wave returns.  (Rihaczek, 1996) 

3.1.6 Specular Scattering  

The scattering phenomena addressed in this paper and implemented in the simulation is specular 

scattering.  Specular scattering depends on the position of the electromagnetic waves in relation to the 

target’s surface normal vectors.  In specular scattering, the angle of reflection of a ray off of a surface is 

equal to the angle of incidence, similar to how light is reflected off a mirror.  This suggests that the 

amount of specular highlight observed by the radar is dependent upon the angle between the line of sight 

vector and the reflection of the electromagnetic energy off the target’s surface.  In determining the 

specular scattering it is crucial to understand the target’s geometry to determine the surface normal 

vectors and angles of reflection.  As discussed later, the requirement for understanding the geometry of 

“scatter points” within the target played a major role in determining to leverage OOP techniques to design 

the simulation. 

3.2 Shadowing of Target Features 

In modeling the radar signature of a target, it is important to account for any “shadowing” that 

might occur.  A scatter point may be shadowed when the radar pulse is prevented from reaching it 
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because the scatter point is obstructed by some target feature.  For example, the ship’s superstructure may 

shadow a portion of the ship’s deck from view.  Similarly, depending upon the plane’s aspect angle, 

portions of the fuselage might be shielded from view by its wing.  

It is interesting to compare and contrast the approaches that might be used to determine target 

shadowing.  With structured design, the target most likely consists of a collection of independent scatter 

points as shown in Figure 14.  To determine if a ray drawn from the radar to a scatter point is shadowed 

by any other portion of the target, all scatter points on the target must be checked to determine if the ray 

intersects them first.  In addition, since each scatter point represents some amount of surface area, it must 

be determined if the ray passes through the immediate area represented by the scatter point.  These 

computations are mathematically difficult and computationally very expensive to perform. 

 

Figure 14.  Treating the Target as a Collection of Independent Points. 
 

A better solution is offered using object oriented analysis and design.  With OOP, the target may 

be treated as a collection of geometric objects such as cones, spheres, facets, and frustums.  Since the 

unique geometry of each part of the target is known, ray tracing techniques may be used to determine 
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whether a particular scatter point is shadowed.  To determine if a scatter point is shadowed by shapes 

within the target, the equation for the “ray” between the scatter point and the radar is plugged into the 

equations defining each of the various shapes in the target.  By solving for and examining the roots of the 

resulting simultaneous equations, it can be determined whether or not any of those shapes shadow the 

scatter point from the radar's view.  Clearly, by treating the target as a collection of geometric shape as 

opposed to individual scatter points, object oriented techniques reduce the complexity and computations 

required to determine target shadowing. 
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4 CHAPTER IV 
BUILDING THE SHAPE LIBRARY 

The library of geometric shapes forms the foundation for the target model used in the simulation.  

As discussed earlier, OOP provides an excellent framework from which to build and grow the shape 

library. The library consists of several different unique shapes derived from a general shape class.  Each 

shape inherits the ability to draw itself, compute its scatter point coordinates, compute its reflectivity, 

determine whether or not it intersects a radar ray, and rotate or orient itself at a specific position.  While 

developing this framework is in and of itself a big step, actually coming up with the algorithms and 

formulas to perform these tasks is another story.  For different types of shapes, different algorithms are 

required.  With the inheritance and polymorphism capabilities of OO, however, adding new shapes, with 

their unique algorithms and properties, to the shape library is a relatively painless procedure. 

In the following sections, an introduction is provided to some basic techniques and algorithms 

available for use with different types of shapes.  With a firm understanding of these basic algorithms, the 

initial library of five shapes discussed in this paper can easily be expanded to contain additional unique 

and interesting shapes. 

4.1 Computing Surface Areas 

Computing the surface area for scatter points on objects such as cones, frustums, spheres, or other 

more complicated shapes poses an interesting problem.  Using the cone as an example, assume the scatter 

points are placed around the cone’s body using a technique where the cone is divided into X uniformly 

spaced “rings”, with each ring containing Y scatter points.  Since the circumference of the rings decreases 

from the base to the tip of the cone, and the number of scatter points per ring is constant, the scatter points 

near the cone’s tip are more densely spaced than those near the cone’s base.  This difference in surface 

area must be accounted for to correctly compute the radar energy reflected from each scatter point. 

One possible solution to the problem of differently sized scatter points is to change the sampling 

scheme such that all scatter points are uniformly sized.  This solution, however, has its shortcomings.  

Assume that each scatter point is set to a size that optimally describes the curvature of the cone near its 
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base.  Near the cone’s tip, however, there is less surface area available to pack the scatter points into.  

This means that there are fewer scatter points available near the tip of the cone to adequately describe its 

curvature.  To solve this problem, one might be tempted to size each scatter point small enough so it 

adequately describes the cone’s curvature near its tip.  This, however, results in excessively small scatter 

points, that when uniformly placed around the cone’s base, result in an excessive number of scatter 

points.  The “extra” scatter points result in wasted execution time, where execution time is a precious 

resource given the high number of calculations required. 

Given the problems of uniformly sized scatter points, the sampling method where each scatter 

point is sized according to its location within the shape is preferred.  The surface area associated with the 

various scatter points may be computed several different ways.  For well known shapes like cones, 

frustums, or spheres, there are canned surface area formulas that may be “adapted” to find the area that 

each scatter point represents.  It would be preferable, however, to have a more generic technique available 

for computing the surface areas for any given solid of revolution.  A solid of revolution is formed by 

rotating some “area” (in the X-Y plane) about the X-axis.  For example, by rotating the area described in 

Figure 16 about the X-axis, the frustum shown in Figure 15 is created.  It should be noted that the 

equation describing the “slant” of a solid of revolution need not be a simple linear equation of Y = mX + 

b.  The equation may be a quadratic, sinusoidal, or any other interesting formula, so long as it is expressed 

in terms of X and Y. 

The generic formula for computing the surface area for any given solid of revolution is given by 

Equation 1.  From this equation, the only information required to compute the surface area is the equation 

and the derivative of the equation describing the solid of revolution’s “slant”.  Once this information is 

known, the integral may be solved to find the formula for computing the solid of revolution’s surface area 

(between some constraints X = a and X = b).  If the constraints a and b are taken to be the minimum and 

maximum X boundary for the various “rings” which constitute the solid of revolution, then the surface 

area for the various scatter points within a ring may be found by dividing that ring’s surface area by the 

number of scatter points within that ring. 
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Figure 15.  Determining Surface Area of a Frustum Section. 
 

As an example, consider finding the surface area for the various scatter points that constitute the 

frustum shown in Figure 15.  From the two dimensional slice of the frustum (taken in the X, Y plane at Z 

= 0), it is evident that the equation describing the frustum’s slant is given by Equation 2 (with a slope of  

–1 and Y intercept of +10).  Taking the derivative of this equation yields Equation 3 (where m = -1).  
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Plugging Equation 2 and Equation 3 back into Equation 1 and solving for the integral yields the formula 

for computing the area of a frustum (between the limits X=a and X=b), as shown by the derivation 

provided in Equation 4. 

 

Figure 16.  2D Slice of a Surface of Revolution (Frustum Example). 
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4.2 Computing Scatter Point Normal Vectors 

In computing the radar signature for the various objects that compose the target, the specular 

scattering off the target’s surface must be determined.  As mentioned previously, specular scattering 

depends on the position of the electromagnetic waves in relation to the surface normal vectors of the 

target’s scatter points.  In specular scattering, the angle of reflection of a ray off of a surface is equal to 

the angle of incidence, similar to how light is reflected off of a mirror.  This suggests that the amount of 

specular highlight observed by the radar is dependent upon the angle between the line of sight vector and 

the reflection of the radar signal off the scatter point.  In determining specular scattering, therefore, it is 

crucial to understand the target geometry to determine the surface normal vectors and angles of reflection 

for the various scatter points. 

 

Figure 17.  Surface Normal Vectors to a Sphere. 

 
In architecting the simulation program, object-oriented techniques greatly simplifies the 

computations and logic required to compute surface normal vectors.  Without OOP, one might be tempted 

to design the simulation such that the target consists of individual scatter points as opposed to a collection 
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of simple shapes.  If this were the case, computing the surface normal for a scatter point would require 

that surrounding scatter points be located, and from their relative positions, the surface normal to the 

scatter point in question estimated using complicated geometric techniques.  While estimating the surface 

normal is not a difficult computation to perform, finding the surrounding scatter points is mathematically 

difficult and computationally expensive.  Moreover, to accurately estimate the surface normal vectors for 

a scatter point, the scatter point sampling must be sufficiently dense, since the target geometry most likely 

varies between scatter points, resulting in the computed normal to a scatter point being slightly off its true 

value. 

A much better solution is to use object-oriented techniques to encapsulate individual scatter 

points within known shapes.  From knowledge of the shape’s geometry, one can determine the vector 

perpendicular to any scatter point contained on the shape’s surface.  The surface normal vector is 

determined by finding two vectors tangent to the shape at the scatter point and taking their cross product 

per Equation 5.  The trick is finding two vectors tangent to the shape at the scatter point.  For simple 

shapes like cylinders or cones, tangent vectors can be determined by inspecting the shape’s symmetry and 

formulating the vectors from the knowledge of the shape’s geometry.  For both simple and complicated 

shapes, however, the more generic technique of determining the gradient can be used to find the plane 

tangent to the scatter point and the surface normal vector. 

Equation 5:  
pointscatterthetotangentplanetheincontainedarevandu

where
vup

:
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The tangent plane to a surface f(x, y, z) = k at a point Po = (xo, yo, zo) is the plane perpendicular to 

the gradient vector at Po.   To obtain the formula for the tangent plane, let P = (x, y, z) run over all points 

in the plane.  Then any vector of the form shown in Equation 6 is parallel to the tangent plane, because P 

= (x, y, z) and Po = (xo, yo, zo) both lie in the tangent plane, but any vector parallel to the tangent plane 

must be perpendicular to the normal vector to the plane.  This means the vector )( oPP
rr

−  and 
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 are perpendicular and their dot product is zero.  This relationship can be used to form the 

relationship described by Equation 7, which can be used to find the equation for the plane tangent to the 

scatter point.  
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As an aide to implementing the gradient technique described above, the following example is 
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One should note that in taking the cross product of two vectors, the order in which the cross 

product is done effects the direction of the resulting vector according to the “right hand rule”.  The right 

hand rule states:  Let θ be the angle between vector U and V, and suppose U is rotated through the angle θ 

until in coincides with V.  If the fingers of the right hand are cupped so they point in the direction of 

rotation, then the thumb roughly indicated the direction of U cross V.   This means that in computing the 

surface normal vectors to a shape like a sphere or cylinder, care must be taken in the ordering of the cross 

product so the resulting normal vector points in the correct direction. 
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Figure 18.  Right Hand Rule. 
 

It should be noted that whenever a shape is moved or rotated the surface normal vectors must be 

recomputed.  Since the surface normal vectors are already known, however, they do not need to be 

recomputed using the numerically expensive cross product technique described above.  Instead, they can 

be recomputed by simply performing the same geometric transformations to the normal vectors as were 

performed to the shape itself. 

4.3 Computing Scatter Point Specular Reflection 

Once the surface normal vectors for a shape are known, all that remains to determine the specular 

reflectivity for a scatter point is to compute the angle between the scatter point’s surface normal vector 

and the electromagnetic energy from the radar.  The radar wave can be represented as a vector by taking 

the coordinates of the radar and subtracting off the location of the scatter point per Equation 8.  This 

vector can then be converted to a unit vector per Equation 9.  From Equation 10, the angle between the 

surface normal vector and the radar wave is determined.  If the resulting angle is between 0 and 90 

degrees, the scatter point is exposed to the radar.  If the resulting angle is between 0 and –90 degrees, the 

scatter point faces away from the radar and is shadowed (reflecting no energy back to the radar). 

Equation 8:  

pointscatterofpositionisP
radarofpositionisP

where:

PPV

pointscatter

radar

pointscatterradarrayradar −=
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Equation 9:  
rayradar

rayradar
rayradar V

V
=U  

Equation 10:  ( )
intposcatterrayradar

pointscatterrayradar

NU

NU
θcos

⋅

•
=  

4.4 Ray Tracing Techniques 

In order to determine the radar signature from a complex target, one needs to understand the 

interactions and interference between the various scatter points that compose the different target sections.  

For example, in modeling the radar signature from an airplane, the wings and/or the fins may shadow part 

of the fuselage.  In modeling the radar cross-section of a ship, the mast and superstructure shadows 

portions of the deck from the radar's view.  Determining which scatter points are shadowed by other 

target features poses an interesting problem.  If all of the scatter points that compose the target are treated 

independently, it is difficult to determine if a “ray” from the radar intersects one scatter point before it 

reaches another.  In addition, since each scatter point represents some surface area, how does one 

determine if the ray intersects the small area which each point represents?  It is a very expensive operation 

to cycle through all the scatter points on a target, checking whether each one blocks the scatter point from 

the radar’s view. 
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Figure 19.  Shadowing Caused by Target Features. 
 

With object-oriented design, the problem of determining if a scatter point is obscured by another 

portion of the target has a simple and elegant solution.  Under an OO framework, each scatter point is 

encapsulated within a shape object.  That shape may be a cone, facet, sphere, cylinder, or other basic 

shape.  Instead of checking all scatter points to see if they cause a scatter point to be obscured, it is much 

more efficient to check if any of the shapes that make up the target cause a scatter point to be obscured.  

The techniques that can be used to determine the shadowing between shapes that make up the target is a 

technique borrowed from rendering known as ray tracing. 

In general, ray tracing is done in the following manner.  First, a ray is traced from the radar to the 

scatter point in question.  This ray may be described by a simple mathematical equation.  Each simple 

shape that makes up the target can also be described by a mathematical equation.  To check if the ray 

intersects a shape that composes the target, simply plug the ray equation into the shape equation and 

solve.  By examining the solution, one can easily determine the location(s) of any intersections between 

the shape and the ray traced from the radar.   If an intersection occurs, it must be determined if the 

intersection point occurs before or after the radar wave reaches the scatter point in question.  To 
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determine this, the range from the radar to the scatter point and intersection point are compared.  If the 

range to the scatter point is greater, then it is shadowed by another part of the target. 

While the general procedure for performing ray tracing is fairly straightforward, there are some 

nuances and tricks that can be used for different types of shapes.  The following sections provide a 

detailed description of the techniques used in the simulation to compute the intersections between rays 

and a small library of basic shapes. 

4.4.1 Ray versus Sphere Intersection 

 
Figure 20.  Ray-Sphere Intersection. 

 
To check if a sphere shadows a scatter point on a target, the following algorithm may be used.  

The ray is defined by two points, P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2).  In the model, P1 is the location 

of the target scatter point and P2 is the location of the radar.  The behavior of the ray is mathematically 

described by Equation 11.  The sphere is mathematically described by Equation 12.  Note from this 

description that the sphere is located at its primitive location, centered about the origin with a radius R.  A 

graphical illustration of the ray-sphere intersection is provided by Figure 20. 
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Substituting the equation for the ray into the equation for a sphere yields a quadratic equation 

given by Equation 13.  The behavior of the ray-sphere intersection can be understood by examining the 

quadratic formula given by Equation 14: 

• If the discriminate is < 0, the ray does not intersect the sphere 

• If the discriminate = 0, the ray intersects the sphere at one point 

• If the discriminate is > 0, the ray intersects the sphere at two points 

 
If the ray intersects the sphere, the intersection point(s) are found by solving the quadratic 

formula and substituting the roots back into Equation 12.  This gives at most two points of intersection, P3 

and P4.  Equation 29 can then be used to check if the scatter point is shadowed by the sphere.  If the range 

P1 (from the radar to the scatter point) is less than range P3 or P4 (from the radar to the point(s) of 

intersection on the sphere), then the sphere shadows the scatter point. 

Equation 15: 
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4.4.2 Ray versus Cylinder Intersection 

 
Figure 21.  Ray-Cylinder Intersection. 

 
To check if a cylinder shadows a scatter point on a target, the following algorithm is used.  The 

ray is defined by two points, P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2).  In the model, P1 is the location of the 

target scatter point and P2 is the location of the radar.  The behavior of the ray is mathematically described 

by Equation 17.  The cylinder is mathematically described by Equation 16.  Note from this description 

that the cylinder is in its primitive location, aligned along the X-axis and centered about the origin.  A 

graphical illustration of the ray-cylinder intersection is provided by Figure 21.   
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Equation 19: 
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Substituting the equation for the ray into the equation for a cylinder yields a quadratic equation 

given by Equation 18.  The behavior of the ray-cylinder intersection is understood by examining the 

quadratic formula given by Equation 19: 

• If the discriminate is < 0, the ray does not intersect the infinite cylinder 

• If the discriminate = 0, the ray intersects the infinite cylinder at exactly one point 

• If the discriminate is > 0, the ray intersects the infinite cylinder at two points 

 
If the ray intersects the infinite cylinder, the intersection point(s) are found by solving the 

quadratic formula and substituting the roots back into Equation 17.  This gives at most two points of 

intersection, P3 and P4.  To determine whether or not the ray intersects the finite cylinder at P3 or P4, the 

conditions specified by Equation 20 are checked. 

Equation 20: 
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If P3 and/or P4 intersect the finite cylinder, the final step is to check if the range from the radar to 

P1 is greater than the range from the radar to P3 or P4, as calculated by Equation 21.  If the range to P1 is 

greater, the cylinder does not shadow the scatter point; otherwise, the scatter point is shadowed. 

Equation 21: 
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4.4.3 Ray versus Frustum Intersection 

 
Figure 22.  Ray-Frustum Intersection. 

 
The algorithm for computing the ray-frustum intersection is similar to the previous algorithms 

with a few minor exceptions.  As before, a ray is defined by two points, P1 = (X1, Y1, Z1) and P2 = (X2, Y2, 

Z2).  P1 is the location of the target scatter point and P2 is the location of the radar.  The ray’s behavior is 

mathematically described by Equation 22.  The frustum is essentially an infinite double cone, as described 

by Equation 23, with restrictions placed on its minimum and maximum extent.  Note that the frustum has 

a slope associated with it which is determined by Equation 24.  The frustum is geometrically described by 

its base and cap radius and the length between its base and end caps.  For the intersection algorithm, the 

frustum needs to be at its primitive location, aligned along the X-axis with the tip of the frustum (if it 

were extended to be cone) at the origin of the coordinate system.   A handy formula for determining the 

location of the frustum “tip” is Equation 25, which calculates the length from the base to the tip of the 

frustum if it were extended to be a cone. In performing these calculations, it may be useful to refer to 

Figure 23, which provides a graphical illustration of a two-dimensional frustum slice. 
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Equation 24: 
ngthFrustrumLe
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Equation 25: 
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Figure 23.  Cross-section of Frustum Primitive. 
 
Substituting the equation for the ray into the equation for the frustum yields a quadratic equation 

given by Equation 26.  The behavior of the ray-frustum intersection is understood by examining the 

quadratic formula given by Equation 27: 
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• If the discriminate is < 0, the ray does not intersect the infinite double cone (containing the 

frustum section). 

• If the discriminate = 0, the ray intersects the infinite double cone (containing the frustum 

section), at exactly one point. 

• If the discriminate is > 0, the ray intersects the infinite double cone (containing the frustum 

section) at exactly two points. 

 
If the ray intersects the infinite double cone (containing the frustum section), then the point(s) of 

intersection are found by solving the quadratic formula using Equation 27 and substituting the roots back 

into Equation 17.  This gives at most two points of intersection, P3 and P4.   To determine whether or not 

the ray intersects the frustum at P3 or P4, the corresponding conditions specified by Equation 28 must be 

met. 
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Equation 28: 

imitiveFrustrumofExtentXMaximumX
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If P3 and/or P4 intersect the frustum, then the final step of the intersection algorithm is to use 

Equation 29 to check if the range from the radar to P1 is greater than the range from the radar to points P3 

or P4.  If the range to P1 is greater, then the frustum does not shadow the scatter point; otherwise, the 

scatter point is shadowed. 
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Equation 29: 
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4.4.4 Ray versus Disc Intersection 

 
Figure 24.  Ray-Disc Intersection. 

 
The ray-disc intersection algorithm is especially useful since many times cylinders, cones, or 

frustums have base and/or end caps.  As before, the ray is defined by two points, P1 = (X1, Y1, Z1) and P2 

= (X2, Y2, Z2) and is mathematically described by Equation 30.  In the simulation, P1 is the location of the 

target scatter point and P2 is the location of the radar.  The disc is geometrically described by its inner and 

outer radius as shown in Figure 24.  The plane that contains the disc is mathematically described by 

Equation 31.  For the intersection algorithm, it is not important for the facet to be located at some 

primitive position. 
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Equation 32: primitivediscacontainingplaneaforx 0=  

 
The first step in the intersection algorithm is to determine the value for “D” in Equation 31 

(assuming the normal vectors to the plane containing the disc have already been determined).  This is 

done by simply substituting the coordinates for the origin of the disc into the equation for the plane and 

solving for D.  To determine the point of intersection of the ray and the plane containing the disc, 

substitute Equation 30 into Equation 31 and solve for U using Equation 33.  Once the value for U is 

found, it is plugged back into the equation for the ray to determine the point of intersection P0. 

Equation 33: 
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To determine if P0 intersects the disc, Equation 34 is used to compute the distance between P0 and 

the disc’s origin.  If this distance is greater than the disc’s inner radius but less than the disc’s outer 

radius, then the ray intersects the disc. 

Equation 34: 22
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For the intersection point P0 to shadow the scatter point P1, the range from the intersection point 

to the radar must be less than the range from the scatter point to the radar, as computed in Equation 35. 

Equation 35: 
2

02
2

02
2

20

2
12

2
12

2
121

)()()(

)()()(

ZZYYXXRangeP

ZZYYXXRangeP

o −+−+−=

−+−+−=
 

 47



4.4.5 Ray versus Three Vertex Facet Intersection 

 

Figure 25.  Ray-Three Vertex Facet Intersection. 
 

The ray-facet intersection algorithm can be used to determine if a ray intersects an arbitrarily 

positioned, three vertex facet.  As before, the ray is defined by two points, P1 = (X1, Y1, Z1) and P2 = (X2, 

Y2, Z2) and is mathematically described by Equation 36.  In the simulation, P1 is the location of the target 

scatter point and P2 is the location of the radar.  The facet is geometrically described by its three vertexes, 

V1, V2, and V3.  The plane that contains the facet is mathematically described by Equation 37.  For the 

intersection algorithm it is not important for the facet to be located at some primitive position. 
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The first step in the intersection algorithm is to determine the value for “d” in Equation 37 

(assuming the normal vectors to the plane containing the facet have already been determined).  This is 

done by simply substituting one of the vertices, V1, V2, or V3 into the equation for the plane and solving 

for D.  To determine the point of intersection, if any, of the ray and the plane containing the facet, 

substitute Equation 36 into Equation 37 and solve for U using Equation 38.  Once the value for U is 

found, it is plugged back into the equations for the ray to determine the point of intersection P. 

Equation 38: 
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To check if the point Po intersects the facet, the geometric principle that the sum of the internal 

angles of a point on the interior of a triangle is 2Π can be used.  The internal angles α1, α2, and α3 can be 

computed by forming the unit vectors Pα1, Pα2, and Pα3 using Equation 39.  The internal angles are then 

given by Equation 40.  If the sum of the internal angles is 2Π, the ray interests the facet at point Po. 

 
Figure 26.  Sum of the Interior Angles of a Point in a Triangle. 
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For the point P0 to shadow the target scatter point P1, the range from intersection point to the 

radar must be less than the range from the target scatter point to the radar, as computed in Equation 41. 
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4.4.6 Intersections with Arbitrarily Positioned Shapes 

Of all the ray tracing techniques discussed so far, only the ray-disc and ray-facet intersection 

algorithm allow for the shape to be arbitrarily positioned.  The sphere, cylinder, and frustum intersection 

algorithms all have the restriction that the shape is centered about the origin and aligned parallel to the X-

axis.  There are two possible solutions to determine the point of intersection when one of these shapes is 

arbitrarily located: 

1. Find the general intersection algorithm between the ray and the arbitrarily located shape. 

2. Use geometric transformations to rotate and translate the shape into its “primitive 

location”, meaning the shape is centered about the axis origin and parallel to the X-axis. 

 
While both solutions are equally valid, the second one is implemented in the simulation because it 

allows for the relatively simple intersection algorithms discussed above to be used as opposed to more 

complex equations for handling shapes at arbitrary positions. 
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Figure 27.  Vector Parallel to Object Body. 
 

To aide in the determination of the translation and rotation needed to move an arbitrarily 

positioned shape to its primitive position, the coordinates of the shape’s origin and a unit vector 

describing its orientation should be encapsulated within each shape object.  Whenever the shape is rotated 

or translated, the shape’s origin and orientation should be updated accordingly.  Using the information 

about the shape’s origin, Equation 42 can be used to determine the geometric translation required to 

center the shape about the axis origin. 

Equation 42: 
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Once the shape is positioned about the axis origin, it needs to be oriented so that it is symmetrical 

about all three axes.  Certain shapes like spheres, once centered about the axis origin, require no rotation 

since they are already symmetrical about all three axes.  Other shapes, like cones, cylinders, and frustums, 

need to be rotated about the Y and Z-axis to make them symmetrical about all three axes. To determine 

the angles of rotation required for these types of shapes, the vector components describing the shape’s 

orientation are plugged into Equation 43 and Equation 44. 
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Once the angles of rotation α and β are determined, they can be plugged into the direction cosine 

matrices provided by Equation 46 and Equation 47 to rotate the shape about the Y and Z-axis.  It should 

be noted that shapes like cylinders, cones, and frustums need not be rotated about the X-axis to position 

them into their primitive locations.  This is due to the geometry of these shapes, whereby they are 

symmetrical along their body axis.  If these shapes were asymmetrical about their body axis, then a 

rotation about the X-axis would be required to correctly orient the shape. 

 
Figure 28.  Rotation about X Axis. 
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Figure 29.  Rotation about Y Axis. 
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Figure 30.  Rotation about Z Axis. 
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5 CHAPTER V 
SIMULATING THE RADAR 

5.1 Setting up the Radar 

After setting up the target model, the next step in building the simulation is modeling how the 

radar perceives targets.  Like the target, the radar can be modeled at several different layers.  To truly 

simulate the radar’s behavior, aspects of the radar like the characteristics of the radiation pattern, beam 

forming, spectral side lobes, frequency mixing, receiver noise, and countless other radar characteristics 

should be included.  For the purposes of this report, however, a minimal model is used to simulate the 

range-Doppler data captured by the radar.  This model consists of the properties and methods required to 

generate the phase history known as the “in-phase and out-of-phase” data that forms the basis for any 

down stream radar signal processing.  As with the target model, the radar model was designed using 

object-oriented principles.  The model is extensible and additional features or characteristics can be added 

in the future to enhance the model’s fidelity and capability. 

5.2 Generating Phase History 

Radar perceives targets by measuring their range and angular change in range, also known as  

range rate.  To determine the target’s range, the elapsed time between the transmission of the radar pulse 

and the reception of the target’s echo is measured.  The radar detects the target’s range rate by measuring 

the change in frequency of the received echo due to the Doppler effect.  The Doppler effect is a shift in 

frequency of a wave radiated, reflected, or received by an object in motion.  The greater the object’s 

speed in relation to an observer, the greater the Doppler effect.  A common example of the Doppler effect 

is the observed change in frequency of an ambulance’s siren as the vehicle approaches and passes a 

bystander.  As the ambulance approaches, the sound waves emitted by the siren are compressed, 

translating to a higher frequency sound.  As the ambulance passes, the siren’s sound waves expand, 

observable to the bystander as a lower frequency sound. 
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In the simulation program, the range-Doppler information from the target must be determined and 

stored in a format suitable for down stream radar signal processing algorithms.  The computation of this 

data, commonly known as “In-Phase and Out-Of-Phase” or “IQ” data is discussed in the following 

sections. 

5.2.1 Computing Slant Ranges 

 
Figure 31.  Line of Site Vectors to Scatter Points and Track Point. 

 
The first step toward computing the IQ data is to determine the line of sight vectors from the 

radar to the target’s scatter points and to the centroid of the target, known as its “track point.”  The slant 

range to each scatter point is computed per Equation 48 by taking the magnitude of the line of sight vector 

from the radar to each scatter point.  The slant range to the track point is computed per Equation 49 by 

taking the magnitude of the vector from the radar to the track point.  The range difference between the 

scatter point line of sight vectors and the track point line of sight vector is then computed using Equation 

50.  Figure 31 provides a graphical description of the track point line of sight vector, a small sampling of 
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scatter point line of sight vectors, and the vector differences between the scatter points and track point 

line of sight vectors. 

Equation 48:  ( ) ( ) ( )2
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5.2.2 Computing Scatter Point Amplitudes 

The next step in determining the phase history is to compute an amplitude for each scatter point 

on the target.  The amplitude determines the amount of energy reflected by the scatter point back to the 

radar.  The first piece of information required is the angle of reflection of the radar wave off the scatter 

point, as discussed in the target modeling section.  The second piece of information required is the 

wavelength of the radar pulse.  The radar’s wavelength is inversely proportional to its frequency.  The 

final piece of information needed is the surface area represented by each scatter point, as was determined 

using the algorithms discussed in the target modeling section.  Once this information is known, Equation 

51 is used to compute each scatter point’s amplitude.  

Equation 51:  
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From the equation for the amplitude, it is interesting to note how the various parameters affect the 

magnitude of the radar energy returned by a scatter point.  If a scatter point represents a large surface 
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area, more energy is reflected.  Small angles of reflection (close to 0 degrees) reflect much more energy 

than large angles (closer to 90 degrees).  Recall that for negative angles of reflection, the scatter point 

faces away from the radar, meaning it is not seen by the radar and its amplitude is zero.  Note also that a 

scatter point may be “shadowed” if some other portion of the target blocks the radar from seeing it.  In 

this case the amplitude for the scatter point is zero.  The algorithms and ray tracing techniques discussed 

in the previous sections are used to compute whether or not a scatter point is shadowed by another portion 

of the target.  As a side note, to optimize the ray tracing routines, ray tracing need only be performed for 

scatter points facing the radar (with an angle of reflection between 0 and 90 degrees). 

5.2.3 Computing Scatter Point Phases 

In addition to amplitude, phase must also be computed for each scatter point.  The phase term 

provides the Doppler information about the target to the radar.  The first phase calculation for the scatter 

point, given by Equation 52, depends on the radar’s wavelength and the magnitude of the vector 

difference between the scatter and track point line of sight vectors.  The initial phase value for the scatter 

point (set to some uniformly distributed random number at the beginning of the simulation) is then added 

on to give a phase value for each scatter point. 

Equation 52:  

simulationof
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The phase value for each scatter point is then plugged into Equation 53.  From this equation, the 

scatter point phase value computed in Equation 52 is added to an array of “range bin terms” that help 

determine the ranges where the majority of the reflected energy from the scatter point falls into.  The final 

phase terms for each scatter point, therefore, is actually an array of phase values created by adding the 

value in each cell of the “range term” to the scatter point phase computed in Equation 52. 
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Equation 53:  
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5.2.4 Target Amplitude and Phase for a Radar Pulse 

To determine the IQ data for a given radar pulse, the amplitude and phase terms for all scatter 

points must be summed according to Equation 54.  Recall that each scatter point has an amplitude and an 

array of “phase values” associated with it.  This means the summation performed over all the scatter 

points is repeated for all phase array terms.  The final IQ data, therefore, consists of an array of complex 

valued numbers, with the number of elements in the array equal to the number of samples taken by the 

radar for each pulse.  Figure 32 provides a graphical illustration of how the I and Q terms from each 

scatter point are summed to create the IQ data for the target for a given radar pulse. 

Equation 54:  
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Figure 32.  Summation of Scatter Point Phase and Range Terms. 

 
A plot of the IQ data generated for a radar pulse is shown in Figure 33.  At first glance, it appears 

that the plot does not reveal any information about the target’s range or range rate.  However, by 

examining the frequency components of the IQ data, information about the target’s range and range rate 

can be extracted.  The algorithms and techniques available for extracting this information are discussed in 

the next chapter. 

 
Figure 33.  In-Phase and Out-of-Phase Plots for Target for a Radar Pulse. 
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6 CHAPTER VI 
PROCESSING IQ DATA 

6.1 Radar Signal Processing 

The IQ data generated in the previous chapter is the most basic data required to perform any 

downstream radar signal processing.  With signal processing techniques, one can improve the signal to 

noise ratio, perform moving target indication (MTI), pulse-Doppler processing, target range rate 

measurement, Doppler beam sharpening, synthetic aperture radar (SAR), and inverse synthetic aperture 

radar processing (ISAR).  For this report, the signal processing techniques for creating range magnitude 

plots (A-Scans) and range-Doppler images are briefly explained.  

6.2 Non-Coherent Processing 

The range magnitude plot, or “A-scan”, illustrates the relative intensity of the target at different 

ranges from the radar.  The trick to creating the A-Scan is extracting the magnitude of the frequencies 

encoded in the IQ data.  This is done by taking the FFT of the sampled IQ data collected by the radar over 

a single pulse, as shown by Equation 55.  The FFT effectively translates the IQ data from the time domain 

to the frequency domain.  By examining the magnitudes of the various frequencies present, and 

correlating them to the “range bins” they occur in, the ranges at which the target signature occurs can be 

determined. 

Equation 55:  

( ) ( )( )( )

( )

( )

( )( )
centertocomponentfrequencyzeroshifting

xarrayofhalvesleftandrightswapsnSmpBinsxfftshift

unityofrootnSmpBinsanise

jxkXxfft

where

nSmpBinsIQfftfftshiftnSmpBinsIQ

th
nSmpBins

i

nSmpBins

kj
nSmpBins

nSmpBins

j

weightedrngcmp

K

KK

1

)()(

:

11

2

)1)(1(

1

π

ω

ω

−

−−−

=

=

⋅==

=

∑
 

 

 60



In computing the FFT of the IQ data, the following observations should be noted.  The first is that 

the samples are first weighted by a “hamming window” that is computed according to Equation 56.  

Hamming windows have the desired property that their Fourier transforms are concentrated around ω=0.   

The Hamming window is calculated using Equation 56.  A graphical illustration of the Hamming window 

in the time domain is provided by Figure 34.  With windowing, side lobes are greatly reduced; however, 

the price paid is a much wider main lobe.  After the FFT is performed, the right and left halves of the 

resulting array are swapped to shift the zero-frequency component to the center of the frequency spectrum 

(Oppenheim, 1989). 

Equation 56:  
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Figure 34.  Hamming Window. 

 
A sample A-scan plot of a missile target is provided by Figure 35.  From this plot it is evident that 

the target signature is strongest in range bins 480-550.  Each range bin corresponds to some range from 

the radar.  For each pulse of the radar, a new A-scan plot can be generated according to the new IQ data 

samples collected from the radar returns.  Over time, the target migrates through range bins as it moves 
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closer to or further from the radar.  Downstream processing uses the range data computed for each pulse, 

or for a collection of pulses, to “track” the target and keep it centered about the display.  Processing the 

range data by performing an FFT across the IQ samples for each pulse is known as non-coherent 

processing since only range information is kept.  In the next section, coherent processing is discussed, 

where both the range and Doppler information is retained.  

 
Figure 35.  Non-Coherent Processing of Video Phase History. 

 

 

Figure 36.  Range Profile for Target (no noise) Occupying Range Bins 480-550. 
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6.3 Coherent Processing 

With coherent processing, both the range and Doppler information about the target is retained.  

From the previous section, it was shown by taking the FFT of the IQ samples for each pulse, that range 

information about the target is extracted.  If in addition to the range FFT, an FFT is taken of the range 

compressed data over a series of pulses, then the range rate or Doppler behavior of the target may be 

extracted.  This can be done by performing a two dimensional FFT over the IQ samples collected for a 

collection of pulses as shown in Figure 37 and Figure 38.  After performing the 2D FFT, complex video 

data is produced which can be used to generate range-Doppler images of the target.  Processing the IQ 

data in this way, where both the target’s range and Doppler are extracted, is known as coherent processing 

and forms the basis for SAR, ISAR, and many other more advanced radar signal processing techniques. 

 
Figure 37.  Coherently Processing IQ Data. 

 

 63



 

2D FFT 

 
Figure 38.  Coherently Processing IQ data over Multiple Pulses. 

6.4 Sample Range-Doppler Maps 

Some examples of range-Doppler maps produced by the simulation are shown below.  For the 

simulation test runs, the geometry for a missile was input into the simulation.  The missile basically 

consists of an assortment of cones, frustums, discs, cylinders, and facets connected together.  The missile 

was given an initial position, rotation, and velocity.  The simulation began with the missile approaching 

the target at some altitude below the radar and at some large positive X offset away from the radar.  At the 

halfway point, the missile was directly beneath the radar.  At the conclusion of the simulation run, the 

missile was beneath the radar at some large negative X offset from the radar. 
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6.4.1 An Approaching Target 

Figure 39 provides a picture of what the missile would like to an observer located at the radar at 

the beginning of the simulation.  Figure 40 provides a picture of what the radar would see at this same 

instance in time.  From the range-Doppler image, it is clear that the radar resolves the different ranges for 

the different sections of the missile, with the missile’s cone being closest to the radar and its exhaust 

being furthest in range.  Along the Y-axis of the range-Doppler map, it is evident that the rotational 

motion of the missile translates to a high Doppler component for the fins and a lower Doppler component 

for the missiles body (since Doppler bins at the top and bottom of the range-Doppler image correspond to 

high positive and negative Doppler shift).  Shadowing of the missile’s exhaust nozzle by the missile body 

and of the fins beneath the missile can also be observed from the range-Doppler map.  The change in 

shadowing of the fins, while not apparent from the static images of the missile, is readily apparent when 

subsequent image frames are stacked together to create a movie of the missile as it completes its flight. 

 
Figure 39.  View from Aircraft for Approaching Missile. 
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Figure 40.  Radar Range-Doppler Image for Approaching Missile. 

 

6.4.2 A Broadside Target 

Figure 41 provides a picture of what the missile would like to an observer at the radar’s location 

when the missile is directly beneath the radar.  Figure 42 provides a picture of what the radar would see at 

this same location.  From the range-Doppler image, it is clear that the radar has difficulty distinguishing 

the ranges for the different sections of the missile, since they are “compressed” into a small number of 

range bins.  Along the Y-axis of the range-Doppler map, the rotational motion of the missile translates to 

a high Doppler component for the fins and a lower Doppler component for the rest of the missile body.  

Since much of the missile is compressed into a small number of range bins and is oriented broadside to 

the radar, the phenomena of specular return manifests itself in the smearing in the range and Doppler 

dimension. 
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Figure 41.  View from Aircraft when Missile Directly below Airplane. 

 

 
Figure 42.  Radar Range-Doppler Image when Missile Directly Below Airplane. 

 

6.4.3 A Receding Target 

Figure 43 provides a picture of what the missile would like to an observer at the radar’s location 

when the missile has passed the radar.  Figure 44 provides a picture of what the radar would see.  From 

the range-Doppler image, it is clear that the radar image is the exact opposite case of where the target is 

approaching the radar.  The missile is spread across a large number of range bins since its cone and tail 

are at near and far range.  The fins still appear in the Doppler bins representing a high positive or negative 

Doppler shift and the missile’s body still appears in Doppler bins corresponding to a smaller Doppler 

shift. 
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Figure 43.  View from Aircraft for Receding Missile. 

 

 
Figure 44.  Range Doppler Image for Receding Missile. 
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7 CHAPTER VII 
SUMMARY AND CONCLUSIONS 

Object oriented programming claims to provide many benefits and advantages over structured 

design.  In the business and financial sectors, object oriented techniques have proven to be beneficial in 

the creation of databases, spreadsheets, and other data driven software.  Microsoft has leveraged off of 

object oriented techniques to build its lucrative windows operating system and office tools suite.  The 

next big thing in the internet are web-based applications written in JAVA that allow users to track stocks, 

listen to music, watch streaming video, or perform live teleconferencing.  Software engineers are evolving 

to object oriented design, and as a result, are capable of developing ever more complex and powerful 

software while minimizing complexity and maximizing maintainability. 

In the realm of science and engineering, however, object oriented techniques have been slow to 

catch on.  While systems engineers are starting to adopt new OO techniques in the formulation of system 

requirements and specifications, they are still mired in the mindset of structured design when it comes to 

creating software.  Whereas in the past such structured languages as Fortran, ADA, and MATLAB have 

provided the necessary tools to perform trade studies, simulations, and analysis, the increasing complexity 

of modern systems demands higher levels of abstraction and design.  It is now crucial for the systems 

engineer to adopt OO techniques in his software, not only to manage the increasing complexity, but also 

to bridge the gap between the systems and software engineering world, whereby both types of engineers 

are capable of viewing the system using the paradigm of object oriented design. 

From the design and implementation of the simulation program for this report, it is clear that the 

systems engineer can evolve from structured to object oriented design without forsaking the mathematical 

analysis tools he depends on.  The systems engineer need not transition to traditional OO languages such 

as C++ and Java, which lack comprehensive mathematical toolboxes, nor must he forsake OO capabilities 

by using non-object oriented mathematical analysis software.  The solution, as demonstrated in the 

implementation of the simulation, is to use MATLAB as the development platform of choice for systems 

engineers in designing simulations, models, and analysis software. 
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MATLAB is clearly capable of handling the signal processing, numerical analysis, mathematical 

algorithms, graphing, and plotting required by modern mathematically intense simulations.  With version 

5, MATLAB now offers the capability of object-oriented programming.  Since MATLAB is historically a 

structured language, however, it is a concern as to its object oriented prowess.  Can software written in 

MATLAB closely resemble OO software written in C++ or Java?  Is MATLAB true to object-oriented 

design or were unacceptable compromises made?  The following sections answers these questions and 

evaluates the success or failure of MATLAB as a mathematically rich, object oriented capable 

programming language. 

7.1 Encapsulation in MATLAB 

An important feature of any object oriented programming language is encapsulation.  The ability 

to encapsulate methods and properties within objects reduces software complexity.  Restricting 

communication with an object to its interface methods shields object's properties from being improperly 

set.  If code is modified, encapsulation limits the number of potential knock-on effects to other parts of 

the program and reduces the amount of coupling throughout the software. 

MATLAB does an excellent job of implementing encapsulation.  A class is built by creating and 

storing its methods in a separate subdirectory.  Within a class subdirectory, a constructor must be created 

that initializes class properties to some known value.  In MATLAB,  properties are initialized at runtime 

as opposed to compile time.  As in C++ and Java, MATLAB allows various arguments to be passed to the 

constructor, providing control over what values an object’s properties are initialized to.  An object's 

properties cannot be directly outside of the object itself.  In this respect, MATLAB is more true to 

encapsulation than some other OO programming languages.  Whereas in C++ object properties can be 

directly accessed through the tricky use of pointers, in MATLAB object properties must be accessed 

through the object’s interface methods. 

Methods within an object can be made public or private.  Public methods can be called from 

outside the object.  As in C++, public methods within a class have the permission to modify, change, or 
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retrieve properties from other objects of the same class type.  Logic can be embedded within class 

methods to ensure that an object’s properties are correctly accessed.  Private methods may also be created 

for an object.  As in C++, private methods can be called only by other methods within the same class.  

They can be called by any other method defined within the class directory, but not from the MATLAB 

command line or by methods outside of the class directory, including any parent methods. 

One advantage of MATLAB over C++ is that a destructor does not have to be called to “clean 

up” memory after objects are finished executing.  MATLAB is also capable of automatically managing 

memory allocation for arrays, matrices, vectors, and any other data type desired. 

7.2 Function and Operator Overloading in MATLAB 

A capability present in some OO languages is function and operator overloading.  While function 

and operator overloading are not required for a language to be “object oriented”, they are usually 

considered as desirable features to have.  With function overloading, methods may be “overloaded” to 

perform different tasks depending upon the type of arguments passed to the function.  For example, 

separate “add” functions may be created that perform either an arithmetic sum or a string concatenation 

depending upon whether numbers or strings are passed in as arguments. 

MATLAB does a good job of implementing function overloading.  An added benefit of 

MATLAB is that most built in functions can be overloaded..  This means that the plot, FFT, transpose, or 

any other MATLAB function can be overloaded to perform a more specific task defined by the user.  

Function overloading proved especially useful in the simulation program in that MATLAB’S built in 

“surf” function, which draws three dimensional surface plots, was overloaded to draw either a target or a 

unique shape such as a cylinder, sphere, or facet, based upon the type of object passed to the surf 

function. 

There are a couple major differences between MATLAB and C++ in regards to function 

overloading.  Whereas in C++ method dispatching is syntax based, in MATLAB, when the argument list 

contains objects of equal precedence, the left-most object is used to select the appropriate method to call.  
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This means that within a function, conditional logic statements must sometimes be used to determine the 

type and number of arguments passed in and to choose the proper code stream to execute.  The need to 

use conditional logic to implement certain types of function overloading proved to be more unwieldy than 

the more efficient method of function overloading offered in C++. 

In addition to function overloading, MATLAB provides operator-overloading capabilities.  

Operator overloading is the ability to override built in operators like ‘+’, ‘-‘, ‘/’, ‘*’, and ‘()’ to perform 

user defined tasks.  This again proved useful in the simulation program whereby the ‘.’ Operator was 

overloaded to “set” or “get” an object’s properties in a more readable manner.  To get the value of the 

radius property within a cylinder object, for example, with an overloaded “.” operator, one can merely 

type “radius = cylinder.radius”.  As with any other set or get method, the overloaded dot operator contains 

the proper logic to ensure the object’s properties are properly accessed. 

One issue that is often associated with operator overloading is determining the operator 

precedence within an operation.  For example, consider the expression objectA + objectB where the “+” 

operator has been overloaded to perform some user defined operation.  Usually for this scenario 

MATLAB assumes the objects have equal precedence and calls the method associated with the leftmost 

object first.  There are however two exceptions (Mathworks, 2000).  First, user-defined classes have 

precedence over built–in MATLAB classes.  Second, user-defined classes can specify their relative 

precedence with respect to other user-defined classes using the inferiorto and superiorto functions.  While 

these two functions help manage the order of operations when different objects are used, it can become 

confusing very quickly.  When implementing operator overloading, it is typically best within MATLAB 

to keep expressions as simple as possible in order to prevent any unnecessary confusion regarding 

operator precedence. 

It should be noted that function and operator overloading are not considered by all to be a 

“desirable feature” to have.  For some, function and operator overloading is considered a dangerous 

practice that increases the potential for bugs and adds complexity to code.  While overloading provides 
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for slicker more elegant code, it can cause confusion if not implemented carefully.  For any software 

project, it should be clearly decided upon front whether or not operator overloading should be used. 

7.3 Inheritance in MATLAB 

Inheritance is another key feature of object-oriented programming.  With inheritance hierarchies 

of parent and children classes may be created.  A child class can inherit properties and methods from one 

parent or from many parents (single of multiple inheritance).  Inheritance can span one or more 

generations and enables the sharing of common functions and enforces common behavior among all 

children classes. 

MATLAB provides inheritance capabilities similar to the C++ language.  In MATLAB, children 

can inherit methods and properties from parents.  The child object includes all of the properties present in 

its parent’s class and can use all of its parent’s public methods.  While the parent can access properties the 

child inherits, it cannot access new properties or methods created within the child itself.  This implies that 

children have the same properties and methods as their parent, plus any additional properties and methods 

they might require.  Methods associated with the parent can operate on child objects, but methods 

associated with children cannot operate on objects belonging to their parent’s class.  This means that for a 

child to access properties belonging to its parent, it must work through the methods provided by the 

parent class.  It should also be noted that unlike in C++, in MATLAB there is no such thing as a 

“protected” method. 

In creating child objects, MATLAB requires all properties inherited and created within the child 

to be initialized.  In C++ and JAVA, this is done through the child object’s constructor.  In these 

traditional OO languages, the child constructor knows to automatically call its parent's constructor to 

properly initialize inherited properties.  Once the parent's constructor is finished, control returns to the 

child constructor where any new properties defined by the child object are initialized.  In MATLAB, a 

similar procedure is used whereby the child constructor calls its parent's constructor to initialize any 

inherited properties.  In MATLAB, however, the call to the parent constructor must be explicitly made 
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and is done after the child's properties are initialized.  Since logic is sometimes required to implement 

“function overloading” within MATLAB, care must be taken to ensure the parent constructor is called 

correctly for all possible branches of execution within the child's constructor. 

MATLAB provides for both single and multiple inheritance.  In single inheritance, objects inherit 

characteristics from one parent class.  In multiple inheritance, objects inherit characteristics from multiple 

parent classes.  While multiple inheritance is a powerful feature, many software engineering experts 

recommend against its use due to the added complexity and potential for bugs.  One particular problem 

with multiple inheritance is when a child inherits similarly named methods from multiple parents.  From 

which parent will that method be inherited?  MATLAB solves this problem by inheriting the method from 

the parent whose constructor is called first from the child's constructor. 

7.4 Aggregation in MATLAB 

In addition to inheritance, MATLAB provides support for aggregation within objects.  Any 

MATLAB object can contain another object as one of its properties.  In the simulation program, for 

example, the target object contained an array of shape objects such as fins, frustums, cones, discs, and 

cylinders.  In MATLAB, methods for an object encapsulated in another object can only be called from a 

method within the container object.  Objects can also be passed as arguments to other objects and returned 

as outputs from methods. 

7.5 Polymorphism in MATLAB 

No object oriented programming language would be complete without the ability to do 

polymorphism.  Polymorphism is the ability of an object to automatically select the correct method to 

invoke at run time.  In the simulation, polymorphism was used to automatically choose the correct 

intersection algorithm to use for ray tracing based upon the type of shape encountered.  Polymorphism 

was also used to “draw” three dimensional perspective drawings for the different shape types. 

MATLAB supports polymorphism, with some slight differences from C++ and JAVA.  When 

looking for the appropriate method to call, MATLAB follows specific rules in determining function 
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precedence.  These rules allow for polymorphism to be implemented, whereby there exists many methods 

with the same name located in their various class directories, and based on the type of object passed to a 

function, the appropriate method is used.  For example, in the simulation program a display routine was 

formulated, whereby the values for all the properties from an object are output.  A display routine was 

written for the target, shape, facet, cylinder, frustum, sphere, and cone classes.  If the display method is 

invoked on a target, the target object’s properties are automatically displayed.  If invoked on a shape, only 

those properties from the shape object are displayed.  If invoked on the sphere, the properties unique to 

the sphere class, along with the properties inherited from its parent shape class, are displayed. 

One negative aspect of MATLAB’S method for implementing polymorphism and function 

overloading is that it is somewhat confusing.  MATLAB uses the following rules to determine function 

precedence: 

For built-in functions the precedence order is as follows as taken from the MATLAB user manual: 

1. Overloaded methods:  If there is a method in the class directory of the dispatching argument that 

has the same name as a MATLAB built-in function, then the method is called instead of the built-

in function (Mathworks, 2000). 

2. Non-overloaded MATLAB functions:  If there is no overloaded method, then the MATLAB 

built-in function is called (Mathworks, 2000). 

3. MATLAB built-in functions take precedence over both sub-functions and private functions.  

Therefore, sub-functions or private functions with same name as MATLAB built-in functions will 

never be called (Mathworks, 2000). 

For functions not built-in to MATLAB 

1. Sub-functions:  Sub-functions take precedence over all other M-file functions and overloaded 

methods that are on the path and have the same name.  Even if the function is called with an 

argument of type matching that of an overloaded method, MATLAB uses the sub-function and 

ignores the overloaded method (Mathworks, 2000). 

2. Private Functions:  Private functions are called if there is no sub-function of the same name 

within current scope.  As with sub-functions, even if the function is called with an argument of 

type matching that of an overloaded method, MATLAB uses the private function and ignores the 

overloaded method (Mathworks, 2000). 
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3. Class Constructor Functions:  Constructor functions take precedence over other MATLAB 

functions.  Therefore, if you create an M-file called polynom.m and place it on the path before the 

constructor @polynom/polynom.m, MATLAB will always call the constructor version 

(Mathworks, 2000). 

4. Overloaded Methods:  MATLAB calls an overloaded method if it is not masked by a subfunction 

of private functions (Mathworks, 2000). 

5. Current Directory:  A function in the current working directory is selected before one elsewhere 

on the path (Mathworks, 2000). 

6. Elsewhere On Path:  Finally, a function anywhere else on the path is selected (Mathworks, 2000). 

 

Clearly MATLAB’S method of implementing polymorphism through function precedence is pretty 

confusing.  Given the legacy of MATLAB as a structured language, however, their techniques of 

implementing polymorphism and inheritance are understandable.  If one is careful about placing 

MATLAB functions in their proper directory location, the whole hierarchy of function precedence should 

be transparent.  MATLAB does provide the which command to determine the precedence of existing 

methods. 

7.6 MATLAB as the Solution 

From the experience of designing, coding, and executing the simulation program, it is clear that 

MATLAB is a possible solution for bridging the gap between the algorithmic world of the system’s 

engineer and the object-oriented world of the software engineer.  MATLAB is one of the premier 

software tools for implementing advanced mathematics, signal processing, image processing, and 

statistical analysis.  Its graphing capabilities are a real boon to the system’s analyst.  With the added 

capability of OO, MATLAB now offers the possibility of object-oriented design as well. 

With OO, the simulations, trade studies, and models created by the system’s engineer can now more 

closely mirror the software design of object oriented system code.  Even if the simulation or tool 

developed is not going to be implemented in a real system, the new OO capabilities of MATLAB allows 

the software tool to be implemented in a manner that saves rework, minimizes complexity, promotes 

readability, and maximize maintainability. 
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One must keep in mind that while the Mathworks did a decent job of adding OO capabilities to 

MATLAB, it is still not in the same league as C++ and JAVA as being a truly OO software language.  

Since MATLAB is historically a structured language, there were many “workarounds” that had to be 

made, including the determination of object precedence, the overloading of constructors and functions,  

and the many rules needed to determine function precedence. 

While learning the new syntax for OOP in MATLAB is not difficult, it is recommended that one first 

have a basic understanding of OO concepts.  No language can produce good OO code if the designer does 

not understand the philosophy behind object oriented design.  At a minimum, to utilize the object oriented 

capabilities of MATLAB, the ideas of encapsulation, inheritance, aggregation, and polymorphism should 

be understood.  With an understanding of these concepts, and a thorough understand of MATLAB, the 

system’s engineer has at his command a truly powerful tool capable of architecting, designing, 

simulating, and analyzing today’s modern hardware and software systems. 
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