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ABSTRACT 

 
In the defense industry a divide currently exists between the systems engineering and software 

engineering disciplines. While software engineering has changed methodologies from structured 

decomposition to object-oriented development, systems engineering has been slow to adopt object-

oriented techniques. This report first examines the current practices of systems engineering. Next a new 

object-oriented systems engineering modeling technique is investigated.  
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CHAPTER I                                                                                                                                                                                  
MOTIVATION 

 
The inspiration for this paper came from an assignment I received in the summer of 2002. My 

new assignment was that of chief system engineer for an IPT that had just been formed. Early on, one of 

the systems engineers on the team told me that she had no background in object-oriented technology and 

furthermore she had no desire to become versed in object-oriented techniques. That being the case, her 

responsibilities were restricted to ensuring that the interface documents with other entities were 

documented so that there was no ambiguity as to the requirements our group was signed up to provide. 

When it came to verifying that our IPT detailed design would support the interface requirements, we had 

to rely on other systems engineers, as she was not able to understand the object-oriented design artifacts 

that the development team had produced. 

Looking back over 26 years of experience in software and systems engineering, I recall that 

development techniques changed over time. At first in the 1970’s software design was captured in 

flowcharts. This was very labor intensive since there were no CASE tools available. The software 

engineer first sketched each set of flowcharts on paper. Next a technical publications expert would draw 

the actual diagrams for the design documentation. The intuitive nature of the final documentation meant 

that systems engineers could grasp the design without any formal training.  

By the early 1980’s the next system I was involved in used PDL as the vehicle for capturing 

software design. This represented a giant step forward because a rudimentary CASE tool was used to 

process the pseudo language generated by the software engineer. The software engineer was able to 

directly enter the design information into the tool. The result was formatted output generated directly by 

the CASE tool. This meant that another group was not required to do post processing of the software 

engineer’s inputs. Since the pseudo language was Structured English, other groups could read and 

understand the software design without any training. 
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By the late 1980’s we began using Structured Analysis / Structured Design (SA/SD) CASE tools. 

The great advance was that like flowcharts, the SA/SD artifacts were graphical in nature. The software 

engineer would interact with the CASE tool to draw the diagrams that reflected the analysis and design of 

the software system. This is done with Data Flow Diagrams (DFDs) that were “a network representation 

of a system. The system may be automated, manual, or mixed. The Data Flow Diagram portrays the 

system in terms of its component pieces, with all interfaces among the components indicated. The 

diagrams are graphic, partitioned, multidimensional, emphasize flow of data, and de-emphasize flow of 

control.” To tie all of the diagrams together was a Data Dictionary (DD) which contained definitions of 

all of the entities depicted on the diagrams. The DD served as a repository of data about data. With 

minimal training, the artifacts were understandable by other groups. (DeMarco, 1979) 

By the mid 1990’s Object-Oriented Analysis and Design (OOA/OOD) begin to be practiced by 

software engineering. “In the object-oriented approach, the entities of computation are objects, which 

send each other messages. These messages result in the invocation of methods, which perform the 

necessary actions. The sender of the message does not need to know how the object organizes its internal 

state, only that it responds to particular messages in a well-defined way.” (Coleman, 1994) CASE tools 

for OOA/OOD were in their infancy at this time and there were many competing methods for OOA/OOD. 

More extensive training was required of the software developers because of the paradigm shift that had 

taken place. Now data encapsulation, inheritance, and polymorphism are the buzzwords that the software 

engineers are concerned with. Whole new sets of artifacts are generated that are not as self-intuitive as 

were the artifacts that had previously been generated by software engineering. Without training other 

groups were now unable to understand much less follow the significance of the artifacts that were now 

being generated. Now the systems engineers have become unable to verify that the system that was being 

designed would indeed be able to satisfy all of the system level requirements that they had levied to be 

satisfied by software. 
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During this time of software paradigm shift, system level requirements continued to be specified 

as a set of discrete statements that as a whole described the requirements of the entire system. As was the 

case with software engineering, systems engineering had over time embraced at first homegrown and then 

commercial tools for requirement management. Several such tools exist in the marketplace today. With 

these tools, systems engineers can maintain relationships between requirements and the entity or entities 

that are responsible for their satisfaction. Software Engineering has found that these artifacts inadequate 

for use in object-oriented development. Thus, when a software engineering team receives requirements 

they are to satisfy, they immediately transform them into Use Cases and Sequence Diagrams to elaborate 

how the software system will behave in satisfaction of their requirements before proceeding with 

generation of other OOA/OOD artifacts. 
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CHAPTER II                                                                                                                                                                                  
CURRENT SYSTEMS ENGINEERING PROCESSES 

2 .1  What  i s  a  Sys tem? 

A system is a collection of different things, which together produce results unachievable by the 

elements alone. (Maier, 2002) It is a set of functional elements organized to satisfy user needs. These 

functional elements include hardware, software, people, facilities, data, and services. A system includes 

the facilities, equipment, special tooling, or processes to establish the manufacturing, test, distribution, 

training, support, operations, and disposal capabilities. To be useful a system must satisfy a useful 

purpose at an affordable cost for an acceptable period of time. 

Complex systems usually contain subsystems that perform simpler tasks that contribute to the 

major system goal. These subsystems may be complex themselves, containing their own subsystems. The 

lowest level in the system hierarchy is the individual components that make up a given subsystem. 

Systems do not exist by themselves. They have boundaries that separate and define them from 

their external environment. Systems normally interact with and are affected by their environment, 

accepting input and providing output as necessary. 

A system has a life cycle from inception to disposal, including identification of a potential 

customer’s perceived needs, addressing development, test, manufacturing, operation, support, and training 

activities, and continuing through various evaluations and upgrades through system disposal. The focus of 

this paper is the system development phase.  

2 .2  Sys tems  Eng ineer ing  Def in i t ion  

Systems Engineers define, develop designs, and deploy systems. Systems engineering is a multi-

faceted discipline, involving human, organizational, and various technical variables that work together. 

Systems engineering can be defined as “the definition, design, development, and maintenance of 

functional, reliable, and trustworthy systems within cost and time constraints.” (Sage, 2000) 
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Systems engineers interact with users, lead teams of experts, and solve technical problems. They 

adopt a big-picture view of problems and their solutions, encompassing the customer’s needs, system 

constraints, and operating environment into their consideration of possible solutions. 

It is the role of systems engineering to form the elements of a system into a whole. The systems 

engineer does not design or build any one specific part of the system. They are responsible for guiding the 

evolution of each component throughout the system life cycle to ensure that, when combined, the 

components will form a system that meets all specified system requirements. 

2 .3  Major  E lements  o f  Sys tems  Eng ineer ing  Dur ing  Deve lopment  

In this paper the systems engineering tasks for system development are considered. The major 

tasks that are associated with system development are Requirements Development, Functional Analysis, 

Requirement Allocation, and System Architecture and Design. These tasks are not done in a sequential 

manner, but are iterated with each other as the system and requirements are decomposed. Figure 1 shows 

a typical process for systems engineering as currently practiced in industry. This is an iterative process 

that attempts to evaluate the resulting architecture considered and be able to choose to best architecture. 

(Krikorian, 2003) This blending of tasks will result in the output products for development. While other 

tasks such as Trade Studies are also performed they are beyond the scope of this paper. 

The classic cruise control system will be used for illustration in this paper of the various elements 

of systems engineering. 

2 .3 .1  Requ irements  Deve lopment  

Requirements Development is the systems engineering activity that examines the customer’s 

requests and defines the needs and expectations for a product. A requirement is a condition, attribute, or 

capability needed by a customer or user to solve a problem or achieve an objective. A requirement 

identifies what, how well, and under what stated environment the condition, attribute, or capability is to 
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be provided or achieved. There are many different types of requirements encountered as you as the 

requirements for a system are defined. 

 
Source: (Krikorian, 2003) 

Figure 1. Typical Systems Engineering Process. 

A good requirement from the systems engineer’s perspective is much more than the actual text of 

the requirement statement. There are many requirement elements that need to be created, provided, 

completed, and documented in order to have a complete set of system, subsystem, or component 

requirements. Well-written and meaningful requirements share consistent characteristics. Common 

characteristics include that each requirement is necessary, implementation-free, concise, unambiguous, 

verifiable, feasible, and complete. 

Requirements elements are commonly placed into a requirements tool such as DOORS, 

RequisitePro, RTM, or Slate. These tools enable the systems engineer to categorize elements into 
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requirement text, allocation to subsystem/component, verification method(s), and change control 

information. 

Top-level requirements for the cruise control system are depicted in Table 1.  

Table 1 Top-Level Requirements for Cruise Control System. 

Requirement ID Requirement Text Verification 
Method 

CCS0010 The driver shall be able to turn the cruise control system on. Test 

CCS0020 The driver shall be able to turn the cruise control system off. Test 

CCS0030 The driver shall be able to engage the cruise control system. Test 

CCS0040 The cruise control system shall maintain a constant speed when the cruise 
control system is on and engaged. 

Test 

CCS0050 The cruise control system shall disengage when the brake is depressed. Test 

CCS0060 The driver shall be able to request the cruise control system to resume at the 
previously engaged speed if the cruise control system is on and previously 
engaged. 

Test 

CCS0070 When resumed, the cruise control system shall bring the vehicle to the 
previously engaged speed. 

Test 

CCS0080 The cruise control system shall not be enabled if the speed of the vehicle is 
less than 30 (TBR) mph. 

Test 

CCS0090 The cruise control system shall be disabled when the engine is not on. Inspection 
 

2 .3 .2  Func t iona l  Ana lys i s 

Functional Analysis is the systems engineering activity in which systems engineers determine 

what functions the system needs to perform in order to meet needs of its missions. What separates 

Functional Analysis from other activities is that it is performed without regard to and independent of any 

implementation. The identified functions are refined and analyzed as they are decomposed into lower and 

lower levels of detail.  

The inputs to the Functional Analysis process are the requirements that have been identified and 

categorized during Requirements Development. The Functional Analysis process typically results in a 

Context Diagram, Data Flow Diagrams, Control Flow Diagrams, Functional Flow Diagrams, N2 

diagrams, and a Concept of Operations document. The produced Functional Analysis artifacts depict the 
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hierarchical arrangement of functions and their internal and external interfaces, their design constraints, 

and their requirements. 

2.3.2.1 Context Diagram 

The Context Diagram identifies the external entities with which the system must interact. These 

external entities include other systems and users. An example Context Diagram for the cruise control 

system is illustrated in Figure 2. On a Context Diagram the dotted lines are control flows and the solid 

lines are data flows. 

 

Figure 2. Context Diagram for the cruise control system. 

2.3.2.2 Data and Control Flow Diagrams 

Data Flow Diagrams illustrate the information flow with in the system. Data flows are shown as 

arrows. Processes are shown as circles. Data files are shown as two parallel lines. Data sources and 

external actors are shown by rectangles. 
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Control Flow Diagrams identify the external the system must interact with. Control flows like 

data flows are shown as arrows. Processes are still shown with circles. Control sources and external actors 

are shown by rectangles. 

Figure 3 shows a combined Data and Control Flow for the cruise control system. The Data Flows 

are shown in dark gray while control flows are shown in light gray.  

 

 

Figure 3. Data and Control Flow Diagram for the cruise control system. 

2.3.2.3 Functional Flow Diagrams 

Functional Flow Diagrams are designed at each level of functional decomposition. The top-level 

shows the system broken into system level functions. Successive decompositions detail each function of 
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origin on the top-level diagram. The diagrams depict what functions are preformed in sequence and which 

are preformed in parallel as well as which paths are optional.  

See Figure 4 for top-level Functional Flow Diagram of the cruise control system. The cruise 

control system is decomposition into three parts. First the “Activate Cruise Control” function receives the 

system on/off requests from the driver. It also receives the engine on/off signal. Another input received is 

the engage request, which will request the current speed and activate the system to maintain a constant 

speed. The “Activate Cruise Control” function also receives the brake pressed signal and disengages the 

cruse control system. The “Compute Current Speed” function receives the pulses from wheel and clock 

inputs and computes the current speed. The “Adjust Speed to Set Point” function maintains the target 

speed by frequently obtaining current speed and requesting the engine to accelerate or decelerate as 

needed. 

 

Figure 4. Top-Level Functional Flow Diagram for the cruise control system. 

 

Figure 5 shows a decomposition of “3.0 Adjust to Set Point” on the top-level Functional Flow 

Diagram of the cruise control system. This has been decomposition into six parts. First the Receive Set 
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“3.2 Maintain Speed at Set Point” function will request the current speed from “2.0 Compute Current 
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Speed”, remember that speed set point, and activate “3.2 Maintain Speed at Set Point” function. The “3.2 

Maintain Speed at Set Point” function maintains the target speed by frequently obtaining current speed 

from “2.0 Compute Current Speed” and requesting the engine to accelerate or decelerate as needed. The 

“3.3 Accelerate to Set Point” will be invoked to raise the speed to the speed set point. The “3.4 Decelerate 

to Set Point” will be invoked to lower the speed to the speed set point. The “3.5 Receive Brake 

Depressed” function receives the brake pressed signal and disengages the cruise control system by 

notifying the “3.2 Maintain Speed at Set Point”. The “3.6 Receive Resume Request” function requests the 

“3.2 Maintain Speed at Set Point” to start again maintaining speed at the set point.  

 

 

Figure 5. Second Level Functional Flow Diagram for the cruise control system. 

2.3.2.4 N2 Diagrams 

N2 Diagrams show relationships between different functions of the system. The result is an 

enumeration of the interfaces between functions. Table 2 depicts a N2 Diagram for the cruise control 

system for the functions in Figure 2. 
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Table 2 N2 Diagram for Top-Level Functions of the Cruise Control System. 

1.0 Activate Cruise Control 1.0 ?  2.0 Request Current Speed 1.0 ?  3.0 New Speed Set Point 

2.0 ?  1.0 Current speed 2.0 Compute Current Speed 2.0 ?  3.0 Current speed 

 3.0 ?  2.0 Request Current Speed 3.0 Adjust Speed to Set Point 

 

2.3.2.5 Concept of Operations 

The Concept of Operations document portrays the system from the point of view of the end-user. 

This document describes the operation of the system and its use in the intended environment. The 

Concept of Operations describes what the system is supposed to do, the order in which it is done, and 

within what time constraints. Thus the Concept of Operations describes what the system is supposed to 

provide the customer in a multitude of situations. See Appendix A for the Concept of Operations for the 

cruise control system. 

2 .3 .3  Requirement  Al locat ion  

While decomposing in the Functional Analysis process the system engineer also allocates 

requirements to the system level functions and their subsequent sub-functions. The goal of system level 

mapping requirements to functions is to ensure that all requirements are satisfied by the identified 

functions and sub-functions. These relationships are captured in the requirements tool. Table 3 contains 

the addition of requirement allocation to the top-level functions of the cruise control system. Table 4 

contains the decomposed requirements for the “3.0 Adjust to Set Point” function and their traceability to 

parent requirements and allocation to the second-level functions. 

Table 3 Top-Level Requirement Allocations to the Cruise Control System. 

Requirement ID Requirement Text Allocation Verification 
Method 

CCS0010 The driver shall be able to turn the cruise control system on. Activate 
Cruise Control 

Test 
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Requirement ID Requirement Text Allocation Verification 
Method 

CCS0020 The driver shall be able to turn the cruise control system 
off. 

Activate 
Cruise Control 

Test 

CCS0030 The driver shall be able to engage the cruise control system. Activate 
Cruise Control 
Adjust Speed 
to Set Point 

Test 

CCS0040 The cruise control system shall maintain a constant speed 
when the cruise control system is on and engaged. 

Compute 
Current Speed 
Adjust Speed 
to Set Point 

Test 

CCS0050 The cruise control system shall disengage when the brake is 
depressed. 

Adjust Speed 
to Set Point 

Test 

CCS0060 The driver shall be able to request the cruise control system 
to resume at the previously engaged speed if the cruise 
control system is on and previously engaged. 

Activate 
Cruise Control 
Adjust Speed 
to Set Point 

Test 

CCS0070 When resumed, the cruise control system shall bring the 
vehicle to the previously engaged speed. 

Compute 
Current Speed 
Adjust Speed 
to Set Point 

Test 

CCS0080 The cruise control system shall be disabled when the engine 
is not on. 

Activate 
Cruise Control 

Inspection 

 

Table 4 Second-Level Requirement Allocation to the Adjust to Set Point function. 

Requirement 
ID 

Parent Requirement 
ID 

Requirement Text Allocation Verification 
Method 

CCS0031 CCS0030 The cruise control system shall retain 
current speed as a set point whenever 
engaged. 

Receive 
Set Point 
for Speed 
 

Test 

CCS0041 CCS0040 If speed is below the speed set point the 
cruise control system shall accelerate to 
the speed set point when the cruise 
control system is active. 

Maintain 
Speed at 
Set Point 
Accelerate 
to Set Point 

Test 

CCS0042 CCS0040 If speed is above the speed set point the 
cruise control system shall decelerate to 
the speed set point when the cruise 
control system is active. 

Maintain 
Speed at 
Set Point 
Decelerate 
to Set Point 

Test 

CCS0051 CCS0050 The cruise control system shall receive a 
signal when the brake is depressed. 

Receive 
Brake 
Depressed 
 

Test 
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Requirement 
ID 

Parent Requirement 
ID 

Requirement Text Allocation Verification 
Method 

CCS0052 CCS0050 The cruise control system shall stop 
controlling speed of the vehicle when the 
brake depressed signal is received. 

Maintain 
Speed at 
Set Point 

Test 

CCS0061 CCS0060 When requested, the cruise control 
system shall resume if the cruise control 
system is active. 

Receive 
Resume 
Request 

Test 

CCS0071 CCS0070 When resumed, the cruise control system 
shall bring the vehicle to the previous 
speed set point. 

Maintain 
Speed at 
Set Point 

Test 

 

2 .3 .4  Sys tem Arch i tec ture  and Des ign  

System Architecture is the major physical properties, style, structure, interactions, and purpose of 

a system. This is sometimes referred to as the physical architecture. It is the association of the system 

functional and performance requirements with physical entities. The development of the System 

Architecture uses the artifacts from the Requirement Analysis, Functional Analysis, and Requirement 

Allocation phases. On-going with construction of the System Architecture is development of the System 

Design. 

During the System Architecture phase the systems engineer must know and concentrate on the 

critical details and interfaces that really matter so that he does not become overloaded with all the details 

of the system. This is important for effective relationships with the client and the others on the systems 

engineering team. To the extent in this phase that the systems engineer becomes concerned with the 

Functional Analysis and System Design is with those specific details that critically affect the system as a 

whole. (Maier, 2002) 

Besides the critical details, the greatest concerns during the System Architecture phase are “with 

the systems’ components and interfaces because: (1) they distinguish a system from its components; (2) 

their addition produces unique system-level functions; (3) subsystem specialists are likely to concentrate 

most on the core and least on the periphery of their subsystems, viewing the latter as (generally 

welcomed) external constraints on their internal design” sense their concern is less for the system as a 
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whole. This stresses the need for viewing the system as a whole because if not managed well, the 

system’s functions can be in jeopardy when integrated together. (Maier, 2002) 

Quality systems demand that quality time be dedicated to the architecture of the enterprise prior 

to detail design and implementation. There are three generally accepted frameworks for describing the 

architecture of a system. They are the Zachman Framework, the Department of Defense Architecture 

Framework (DoDAF) formally known as C4ISR, and the Rational 4+1 Views. Experience shows the 

benefits of multiple views of the system along with a structured, consistent approach for describing and 

developing complex systems. For defense work with the DoD, the DoDAF is the preferred architecture, 

but that does not preclude developing views from the Zachman Framework or the Rational 4+1 Views 

where the systems engineer finds those of benefit. 

2.3.4.1 Zachman Framework 

The Zachman Framework is a comprehensive, logical, and systematic classification scheme for 

organizing the primitive architectural artifacts of an enterprise. It depicts how everything in the enterprise 

fits together and enables analysis of specific aspects of the enterprise. It is a matrix whose columns are the 

six interrogatives: what (data), how (functions), where (network), who (people), when (timing), and why 

(motivation). The rows represent different perspectives of the enterprise: contextual (planner), conceptual 

(owner), logical (designer), physical (builder), and out-of-context (sub-contractor). Table 5 shows the 

associations of the rows and columns of the Zachman Framework.  

Table 5 Zackman Framework. 

 Data  
(What) 

Function 
(How) 

Network 
(Where) 

People 
(Who) 

Time 
(When) 

Motivation 
(Why) 

Objectives/ 
Scope 

(Contextual) 

Planner 

List of things 
important to 

the enterprise 

List of 
processes the 

enterprise 
performs 

List of 
locations 
where the 
enterprise 
operates 

List of 
organizational 

units 

List of 
business 

events / cycles 

List of  
business goals 

/ strategies 

Enterprise 
Model 

(Conceptual) 

Owner 

Entity 
relationship 

diagram 

Business 
process model 
(physical date 
flow diagram) 

Logistics 
network 

(nodes and 
links) 

Organization 
chart, with 
roles; skill 

sets; security 

Business 
master 

schedule 

Business 
Rules 
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 Data  
(What) 

Function 
(How) 

Network 
(Where) 

People 
(Who) 

Time 
(When) 

Motivation 
(Why) 

System Model 
(Logical) 

 

Designer 

Data model 
(converged 

entities, fully 
normalized) 

Essential data 
flow diagram; 

application 
architecture 

Distributed 
system 

architecture 

Human 
interface 

architecture 
(roles, data, 

access) 

Dependency 
diagram, 
entity life 

history 
(process 

structure) 

Business rule 
model 

Technology 
Model 

(Physical) 

Builder 

Data 
architecture 
(tables and 

columns); map 
to legacy data 

System 
design; 

structure chart, 
pseudo-code 

System 
architecture 
(hardware, 
software 
types) 

User interface 
(how the 

system will 
behave); 
security 
design 

Control flow 
diagram 
(control 

structure) 

Business rule 
design 

Detailed 
Representation 
(out-of-context) 

Sub-Contractor 

Data design 
(denormalized

) physical 
storage design 

Detailed 
program 
design 

Network 
architecture 

Screens, 
security 

architecture 
(who can see 

what?) 

Timing 
definitions 

Rule 
specification 
in program 

logic 

Functioning 
System 

Converted 
data 

Executable 
programs 

Communica-
tions facilities 

Trained 
people 

Business 
events 

Enforced rules 

Source: Baake (2003) 

2.3.4.2 Department of Defense Architecture Framework (DoDAF) 

Each view within the DoDAF is made up of required (essential) and optional elements. In use the 

systems engineer must complete all essential elements along with selected optional elements as seen 

appropriate. Each of these elements is a modeling method. (Maier, 2002) The four major views of the 

DoDAF are the all views, operational, system, and technical.  

There are three all views. The first two are required. They are denoted as Overview and Summary 

(AV-1), Information and Integrated Dictionary (AV-2), and Capability Maturity Profile (AV-3). They are 

simple, textual objects. The AV-1 serves two purposes. In the initial phases of architecture development it 

serves as a planning guide. Upon completion of an architecture project it provides summary textual 

information concerning the six interrogatives: who, what, when, why, and how.  The AV-2 is a typical 

data dictionary providing definitions of all terms used in the framework. The AV-3 discusses the maturity 

of the system over time. (Baake, 2003) 

“The operational view shows how military operations are carried out through the exchange of 

information. It is defined as a description of task and activities, operational elements, and information 
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flows integrated to accomplish support military operations.” (Maier, 2002) It contains descriptions (often 

graphical) of the operational elements, assigned tasks and activities, and information flows required to 

support the warfighter. It defines the types of information exchanged, the frequency of exchange, which 

tasks and activities are supported by the information exchanges, and the nature of information exchanges 

in detail sufficient to ascertain specific interoperability requirements. The three essential products are: 

High-Level Operational Concept Graphic (OV-1), Operational Node Connectivity Description (OV-2), 

and Operational Information Exchange Matrix (OV-3). The six optional products are: Command 

Relationships Model (OV-4), Activity Model (OV-5), Operational Rules Model (OV-6a), Operational 

State Transition Model (OV-6b), Operational Event/Trace Description (OV-6c), and Logical Data Model 

(OV-7). (Baake, 2003) 

The systems architecture view is a description, including graphics, of systems and 

interconnections providing for, or supporting, warfighting functions. (Maier, 2002) For a domain, the 

systems architecture views shows how multiple systems link and interoperate, and may describe the 

internal construction and operations of particular systems within the architecture. For the individual 

system, the systems architecture view includes the physical connection, location, and identification of key 

nodes (including materiel item nodes), circuits, networks, warfighting platforms, etc., and specifies 

system and component performance parameters (e.g., mean time between failure, maintainability, 

availability). The systems architecture view associates physical resources and their performance attributes 

to the operational view and its requirements per standards defined in the technical architecture. The one 

essential product is the System Interface Description (SV-1). The twelve optional products are: Systems 

Communications Description (SV-2), Systems2 Matrix (SV-3), Systems Functional Description (SV-4), 

Operational Activity to System Traceability Matrix (SV-5), System Information Exchange Matrix (SV-6), 

Systems Performance Parameters Matrix (SV-7), System Evolution Description Matrix (SV-8), System 

Technology Forecast (SV-9), System Rules Model (SV-10a), System State Transcription Description 

(SV-10b), Systems Event Trace Description (SV-10c), Physical Data Model (SV-11). (Baake, 2003) 
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The technical architecture view is the minimal set of rules governing the arrangement, interaction, 

and interdependence of system parts or elements, whose purpose is to ensure that a conformant system 

satisfies a specified set of requirements. (Maier, 2002) The technical architecture view provides the 

technical systems-implementation guidelines upon which engineering specifications are based, common 

building blocks are established, and product lines are developed. The technical architecture view includes 

a collection of the technical standards, conventions, rules and criteria organized into profile(s) that govern 

system services, interfaces, and relationships for particular systems architecture views and that relate to 

particular operational views. The one essential product is the Technical Architecture Profile (TV-1). The 

one optional product is the Standards Technology Forecast (TV-2). (Baake, 2003) 

2.3.4.3 Rational 4+1 Views 

The Rational 4+1 Views architecture consists of the Logical/Design View, Implementation 

(Development) View, Process View, and Deployment (Physical) View all surrounding the Use Case 

(Scenario) View.  Figure 6 depicts the relationships of the five views. 

The 4+1 View model allows the various stakeholders to find what they want to know about the 

architecture. Systems engineers approach this from the Process and Deployment views. Data specialists, 

customers, and end-users approach from the Logical/Design view. Project managers and software 

configuration management see it from the Deployment view. (Kruchten, 1995) Table 6 shows a summery 

of the Rational 4+1 Views.  

2.3.4.4 System Design 

The purpose of System Design is to further describe and refine the subsystem elements in order to 

provide a well-defined system to be developed. This involves translating the System Architecture into 

products, components, and process solutions. Thus the System Architecture is converted into a realizable 

design involving hardware, software, and operations. This effort is iterative, as more of the System 

Architecture is known more full featured becomes the System Design. 
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Source: Baake (2003) 

Figure 6. Rational 4+1 Views. 

Table 6 Summary of the Rational 4+1 View Model. 

View Logical Process Development Physical Use Case 

Components Class Task Module Subsystem, 
Node 

Step,  
Scripts 

Connectors Association, 
Inheritance, 
Containment 

Rendezvous, 
Message, 
Broadcast, 
RPC, JMS, etc. 

Compilation 
dependency, 
“with” clause, 
“include” 

Communication 
medium,  
LAN, WAN, 
bus, etc.  

 

Containers Class category Process Subsystem 
(library) 

Physical 
subsystem 

Web 

Stakeholders End-user System 
designer, 
integrator 

Developer, 
Manager 

System 
designer 

End-user, 
Developer 

Concerns Functionality Performance, 
Availability, 
Software fault-
tolerance, 
Integrity 

Organization, 
Portability, 
Reuse, Line-
of-product 

Scalability, 
Performance, 
Availability 

Understand-
ability 

Source: (Kruchten, 1995) 

 
Logical/Design View:  
• Structure  
• Design Mechanisms  
• System Functions  
• Class, Collaboration, Activity &  
  Statechart Diagrams  
 

 
Implementation View:  
• Software Management  
• Implementation Mechanisms  
• Component, Interaction,  
  Statechart & Activity Diagrams 
 
 

 
Process View:  
• Dynamic, Run-time Decomposition  
• Processes & Threads  
• Performance, Scalability  
• Active Classes  

 
Deployment View:  
• S/W – H/W Mapping  
• Physical Topology  
• Deployment Diagram  

 
Use Case View:  
• User Functionality  
• Functional Requirements  
• Use Case, Activity Diagram  

Dynamic (Executable) Model 
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Inputs to System Design are the artifacts from the other systems engineering efforts. System 

Design artifacts include Interface Specifications which document the external and internal interfaces 

between systems, products, subsystems, and components. Typical Interface Specifications include 

requirement specifications for the interface, definition of the exchange over the interface, and design of 

the interface.  

During this phase, system requirements are further mapped to ensure that the finished solution 

will meet all requirements by identifying where each portion of a requirement is satisfied. This provides 

another means to monitor and track progress against the requirements form the user. Remember that 

requirements were initially allocation from the Functional Analysis of the system. This mapping is a 

continuation of the requirements allocation process down to the design level of detail. The relationship of 

requirements, functions, and products is captured in the requirements tool. From this tool, reports can be 

pulled that will show interrelationships of requirements to the various work products. 
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CHAPTER III                                                                                                                                                                                  
OBJECT-ORIENTED SYSTEMS ENGINEERING 

3 .1  The  I s sue  wi th  Current  Sys tems  Eng ineer ing  Processes 

Despite all of the efforts of systems engineers, many times products fail to meet the expectations 

of the customer. Often, these types of failures are attributed to gaps in the interactions between the 

various engineering disciplines (systems, software, hardware, etc.). Contributing to this gap is the fact that 

these many different disciplines use different techniques for requirement analysis, functional analysis, 

architecture partitioning, and design development. This gap results from incomplete communications 

resulting from an incomplete set of requirements used to develop the system, misunderstanding the 

architecture description, and/or some other collection of missing attributes of the system. (Krikorian, 

2003) 

To foster added communication, these different disciplines need to establish a common 

vocabulary. For software intensive systems, methods used in both disciplines need to be evaluated. Since 

software engineering has switched from Structured Analysis and Design (SA/SD) to Object-Oriented 

Analysis and Design (OOA/OOD), can object-oriented techniques be also used by systems engineering? 

That is the focus of this chapter. 

3.2 Objec t -Or iented  Sys tems  Eng ineer ing  (OOSE)  

Since the Unified Modeling Language (UML) is the de facto standard for software OOA/OOD, 

UML is a reasonable starting place for Object-Oriented Systems Engineering (OOSE). Today UML 

supports a language for incremental and iterative software requirements analysis and detailed design 

through OOA/OOD. The UML standard, currently at version 1.3 permits specification of the software 

product independent of programming language or development process. “This independent product 

representation has raised interest in the systems engineering community: OO methods might be a 

mechanism to unite product development disciplines and remove the gap between the specified and as-

built work products.” (Krikorian, 2003) Version 2.0 is being targeted to have extensions to enable 
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systems engineers to generate additional artifacts to support their needs for Requirements Development, 

Functional Analysis, Requirement Allocation, and System Architecture and Design, as well as support for 

Subsystem and System Testing. 

OOSE proposes two additional diagrams to supplement the 4+1 architecture views. The first is 

the Metacontext Diagram. The other is the System Assembly view. All of these views together help 

ensure product consistency at all levels of system decomposition. (Krikorian, 2003) 

3.2 .1  Metacontext  Diagram  

The top-level Metacontext Diagram, as depicted in Figure 7, “captures the system, external 

influences, constraints performance requirements, test configuration, and development requirements and 

constraints on the elements. …  These views also shed light on element development issues, requirements, 

and constraints; they also provide a context for the other views.  

“This diagram also provides a forum for capturing the hierarchy of product elements and the 

impacts on system development. It captures these items as packages to support decomposition and groups 

these influences on the system. This layering of packages ensures that the context for the element under 

investigation is available to the analyst and developer for product definition.” (Krikorian, 2003) 

 

 
Source: (Krikorian, 2003) 

Figure 7. Metacontext Diagram. 

System   
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Process   
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3.2.2  Sys tem Assembly  View 

A System Assembly view provides an extension on the analysis techniques used for software-

based systems. This additional view attempts to reconcile the mismatch among the various physical, 

hardware, and software architectures. By capturing the expected product hierarchy, the System Assembly 

view “provides a context for guiding the development of the 4+1 architecture view.” (Krikorian, 2003) 

While the cruise control example used until now was for only the software to be developed, note that this 

view also includes the hardware and other disciplines that drive the overall system. An example System 

Assembly view for the cruise control system with hardware elements is shown in Figure 8. 

 

 

Figure 8. System Assembly View for Cruise Control System. 
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From domain dependent and independent analysis, performance and non-functional requirements 

are allocated to the physical attributes of lower-level elements in the System Assembly view. This 

analysis considers such things as algorithm accuracies, error margins and budgets, performance budgets, 

and manufacturing issues to develop criteria for allocating parameters to the product elements. (Krikorian, 

2003) 

Facets of issues that impact Requirements Development, Functional Analysis, Requirement 

Allocation, and System Architecture and Design processes are incorporated in the System Assembly 

view. Its layered tree of expected system elements and their conceived behavior guides the system 

engineer using the OOSE process in describing how the product elements work together so that the 

system can perform its intended functions. This view also emphasizes roles, behavior, development items, 

and issues that are critical to the system. (Krikorian, 2003) 

3.2.3 Au gmented  4+1  View 

Recall the Rational 4+1 view was discussed in section 2.3.4.3. It consists of 4 views (Logical, 

Process, Deployment, and Implementation) with a central Use Case view in the middle. For OOSE this 

has been extended as shown in Figure 9.  

3.2.3.1 Augmented Use Case View 

In the 4+1 View, the Use Case View is in the center, stressing the central role that use cases play. 

In addition to the use case, a textual description of a expected system behavior, sequence diagrams are 

drawn. A sequence diagram provides a ordered series diagram that exhibits the interactions of elements in 

the System Assembly view with various external actors (entities).  

 Cantor proposed extending the use case descriptions and associated sequence diagrams to 

include expected internal interactions among lower-level elements that are necessary to realize the 

behavior requested by external sources (Cantor, 1998) This extension to use cases provides the foundation 

used in OOSE to identify, group, refine, and allocate behavior to lower-level elements. 
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Source: (Krikorian, 2003) 
Figure 9. Augmented 4+1 Views. 

In OOSE, performance requirements are attached to the appropriate use case and associated 

sequence diagram, down to a specific use case step. Developers will then build collaboration diagrams in 

conjunction with a sequence diagram of a use case to allocate and discuss functional allocation, interface, 

performance, and communications issues. (Krikorian, 2003) 

3.2.3.2 Augmented Logical View 

The relationships of dependencies among system elements are captured in the Logical View. 

Partitioning of the system into computational and physical element services to collaborate to support 

system behavior is shown on the Logical View. (Krikorian, 2003) 
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• Map packages to processes  

 
  
• S/W – H/W Mapping  
• Physical topology  
• Deployment diagram  
 
 

 

• System requirements  
• Subsystem requirements  
• Class requirements     

Use Case View 
 

Process View 

Logical View Implementation View 

Deployment View    



 26 

3.2.3.3 Augmented Process View 

States, modes, concurrency, and synchronization relationships are captured in the Process View. 

The use of UML stereotyping is exploited to express traditional functional flow, data flow, and control 

flow information, though not to complete satisfaction. The activity diagram portion of UML is used to 

provide the primary view which captures relationships and activities that prove difficult using just use 

cases to capture and express. Following this, developers will generate activity diagrams directly from 

these artifacts. (Krikorian, 2003) 

3.2.3.4 Augmented Deployment/Physical View 

For OOSE, the deployment view is extended to include more physical elements. If the system 

under development includes preexisting (legacy) systems, this view will also capture any preexisting 

processing resources and components and their physical relationships. These will flow into the System 

Architecture and Design across the system decomposition hierarchy. In conjunction with the logical view 

and the System Assembly view, the deployment/physical view captures the resulting element-level 

architecture. Also captured are any architecture impacts “from the computational-task allocation policies, 

computational-file allocation policies, and the selected design patterns.” (Krikorian, 2003) 

3.2.3.5 Augmented Implementation View 

Captured in the implementation view are any realized functional components of the system. 

Hardware-only items are captured as components. By including mechanical structures, developers are 

actually aided in identifying additional performance and response requirements on software-based 

controls. (Krikorian, 2003) 

3.3  OOSE Process  Execut ion  

Object-oriented systems engineering (OOSE) promises to allow discovery of functionally needed 

by a system latter in a program than the traditional “do-it-all-at-the-beginning” process prior to any 

development that is used today. All of the views will be developed at the same time as the system 
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definition evolves. The development team can begin without the system first being fully defined. 

Learning can occur during all activities as the system comes together. Insertion of late functionality can 

occur without large sections of the system being affected.  

Figure 10 depicts OOSE product development, from top-level systems analysis to the definitions 

of all components. The systems engineering team applies this process to all elements in the system 

hierarchy. For each level of decomposition the products produced are a refinement of the Systems 

Analysis view, the supported 4+1 views, and the description of all allocation of the behavior throughout 

the system. Allocations of functional requirements to immediately lower elements are captured in these 

descriptions. Other architecturally significant nonfunctional requirements and constraints such as those 

affecting interfaces, operations, performance, physical layout, testing, or manufacturing are also captured. 

(Krikorian, 2003) 

3 .3 .1  Sys tem Assembly  View and  Requ irements 

Typically the customer provides his requirements in one or more requirements document. These 

documents usually cover both function and non-functional requirements. They are the basis for the 

systems engineering team to generate first a system-level, then a subsystem level, and finally a 

component level set of requirements. The systems engineering team not only generates the requirements, 

but adds additional information to aid the development team in its understanding of the requirements. 

Employing Use Cases is a fundamental part of object-oriented software engineering. Use Cases and their 

associated Sequence Diagrams are a way of describing the behavior of the system from the perspective of 

the actors (users and other entities) that interact with the system to accomplish its objectives. (Jacobson, 

1992) 

From the System Assembly view a layered-tree hierarchy of relationships is established. Some 

system behaviors and supporting interfaces for the requirements may not be immediately visible. (“A 

good example of this problem is the requirement for anomaly detection or support for legacy 

manufacturing processes.”) Elements are added to the System Assembly view represent related, grouped 
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behavior. These added elements supplement the hierarchy and capture the roles of lower-level Assembly 

views at the Subsystem and finally Component level. (Krikorian, 2003) 

 

 
Source: (Krikorian, 2003)  

Figure 10. Update of Typical Systems Engineering Process for OOSE. 

3 .3 .2  Ana lyze  the  Requ irements 

Leffingwell has identified five steps to perform while doing problem analysis so that the systems 

engineering team can understand the needs of all of the stakeholders of the new system. Since most 

systems have a specific set of problems to be solved, using problem analysis techniques will ensure that 

the team has an understanding of the problem domain. (Leffingwell, 2000) 
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The first step is to gain agreement among the team on the definition of the problem that is to be 

solved. Understanding the needs and wants of the customer and end user is necessary. Be sure to include 

involvement of as many stakeholders as possible. Inclusion of management often provides a different 

viewpoint that is valuable so that the team stays on target will all contract ional agreements. (Leffingwell, 

2000) 

Next, examine the problem statements and perform a root cause analysis. This is a systematic 

way of uncovering the underlying (or root) origin of the problems being examined. Drawing a fishbone 

diagram often aids in ascertaining root causes. Brainstorming is another approach that could be employed. 

Be careful that solutions selected are of value to the customer and end user, as many roots causes are 

simply not worth fixing. The updated problem statement should be distributed among as many as 

practical for feedback. When completed, all project members should be working toward the same goal. 

(Leffingwell, 2000) 

Thirdly to effectively solve any complex problem all of the stakeholders and users must have 

their needs satisfied. Leffingwell defines a stakeholder as “anyone who could be materially affected by the 

implementation of a new system or application.” Some stakeholders are not directly users of the system. 

Do not overlook the political environment the system will reside. It is crucially important that all 

stakeholder’s needs are addressed adequately so that the solution is not only effective, but accepted. 

(Leffingwell, 2000) 

Now that the problem statement has been agreed to and the users and stakeholders are defined, 

the boundaries of the solution to be developed must be established. Understanding all of the entities that 

interact with the system is vital. In object-oriented terminology these entities are referred to as actors. 

Leffingwell gives the following questions to aid in finding all of the actors: 

?  Who will supply, use, of remove information from the system? 

?  Who will operate the system? 

?  Who will perform any system maintenance? 
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?  Where will the system be used? 

?  Where does the system get its information? 

?  What other external systems will interact with the system? (Leffingwell, 2000) 

The systems engineer now can create a “system perspective” that describes the system boundary 

interactions with the users and other interfaces. Figure 11 depicts a simplified system perspective for the 

cruise control system. The dotted line shows the cruise control system boundary. 

 

Figure 11. Simplified System Perspective of Cruise Control System. 

Finally, the fifth step is identifying any constraints that need to be imposed on the system. 

Leffingwell defines a constraint as “a restriction on the degree of freedom we have in providing a 

solution.”  Each constraint must be carefully considered as each might restrict the ability to deliver a 

particular selected solution. Constraints can come from many different sources including economic, 

political, technical, system, environmental, operational, resource, and schedule. (Leffingwell, 2000) 

With these steps completed, a good understanding of the problem to be solved is accomplished. 

The stakeholders who will decide whether or not the project is successful are identified. An understanding 

of what is part of the system and what is outside of the system has been accomplished. The limits 

imposed by the various constraints on the system are known. (Leffingwell, 2000) 

3 .3 .3  Ident i fy  Candidate  Use  Cases 

In OOSE, this is one of the most important activities. Review the Concept of Operations and 

high-level requirements to gain an understanding of the system and its logical components and 
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subsystems. Now with the various stakeholders conduct a series of workshops to gain insight into product 

development and delivery concerns. In these workshops, using the System Assembly view as the 

principal framework to capture issues and drivers, identify how to best identify the top-level Use Cases. 

In the workshop, the Use Cases should allow for the discovery of subsystem element design drivers. The 

Use Cases identified must address deployment, operational, non-operational, test, and maintenance 

activities. (Krikorian, 2003) 

For the cruise control example, several use cases can be constructed. Five candidate use cases are: 

Activate/Deactivate cruise control, Compute speed, Store speed, Keep speed constant, and Resume speed. 

Figure 12 depicts these in a Use Case Diagram. 

 

 

Figure 12. Use Case Diagram of Cruise Control System. 
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Large-scale systems that are typical in defense systems will have multiple interfaces and limited 

to no user interfaces often have behaviors that are not visible at the upper-level of decomposition. 

Consequently, it is not easy to fully describe the requirements, operational sequences, of operational 

states and modes imposed on subsidiary elements. Kirkorian gives two examples to illustrate this point. 

“For example, the systems ability to  

?  Conduct routine operations and maintenance 

?  Detect and resolve anomalies in line-replaceable units 

are examples of system level requirements that do not easily map to interfaces.” Even though there is not 

yet visibility at the system level, developers can have insight into how the lower level components would 

handle these types of requirements. (Krikorian, 2003) 

In summary, Krikorian states that the use case workshops are “therefore critical to capturing the 

overall system behavior, yet provides the freedom to later discover expected, lower level behavior and not 

expose the lower behavior at the current system-level of system decomposition, Therefore, use case 

descriptions have a broader variety in there descriptions at higher levels. They begin to incorporate more 

specific details as the analysis approaches terminal components.” (Krikorian, 2003) 

3 .4  Us ing  OOSE to  Des ign  Products 

Once the top-level use cases are defined, systems engineers can turn their attention to use case 

requirements, architecture, and design products. Figure 13 illustrates this process. 

3 .4 .1  Deve lop ing  Use  Cases 

In use case development, the systems engineering team develops functional, interface, and 

operational requirements. These requirements are then allocated to the elements of the next level of the 

System Assembly view hierarchy. (Krikorian, 2003) 
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Source: (Krikorian, 2003) 

Figure 13. Systems Engineering Phases for each System Assembly Element. 

From Larman, use case descriptions identify the external influences on the elements and the 

intended response. The text description of use cases capture this response by containing  

?  An external view of the element’s behavior in response to these interfaces 

?  And internal view that suggests how dependent subelements might interact to satisfy the use case. 

(Larman, 1997) 

The system engineering teams discover, reinforce, and refine the partitioning of the subselements 

of the System Assembly views through their discussion of the internal view. (Krikorian, 2003) 

3.4.1.1 Use Case Descriptions 

As use case descriptions are developed for a level of elements in the System Assembly view, 

consideration must also be given to the internal behavior of the subelements of that level of 

decomposition. For example, in developing the use case descriptions for “Adjust to Set Point” for the 

cruise control system in Figure 8 in section 3.2.2, the internal behavior of the six elements in the level 

below must also be considered. Note that while focusing on “Adjust to Set Point” the subordinate 

elements to “Activate System” and “Compute Current Speed” are not considered. 
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Care must be taken by the systems engineering team to not drop too low too quickly. Even if 

functionality is suspected at a lower level of the System Assembly view than that under consideration, 

intentionally focus on only the interactions at the next lower level. Doing so will ensure that each level 

has a consistency of detail in the artifacts of that level. At this time the team also develops alternative 

flows for the use cases as well as expected error conditions. (Krikorian, 2003) 

3.4.1.2 Design Artifacts 

For each element there are design analysis artifacts which describe the operations of the logical or 

physical components at the next level of System Assembly decomposition. Included in these artifacts are 

use case descriptions and their supporting sequence diagrams. These artifacts capture the expected 

interaction among subelements. The downward flow of allocated behavior to the supporting subsystems 

and components is traced in the use case anatomy diagrams. Descriptions of the subelements capture the 

global constraints that are placed on lower-level elements and their allocated requirements. (Krikorian, 

2003) 

Activity and class diagrams make up the process views and capture critical timing relationships. 

Note that the process also generates deployment views that conform to these process views. (Krikorian, 

2003) 

 At this point, a systems engineering team might discover that the originally proposed hardware 

configuration is inadequate. The System Assembly view is updated by the systems engineering team to 

reflect items that it has been added, removed or collapsed into other physical elements. The updated 

System Assembly view also captures the collaborations of the new roles of the lower-level components. 

The design thus gains cohesion, lowering the total cost of ownership. (Krikorian, 2003) 

Krikorian notes that “the design team does not maintain all its design products throughout the 

analysis process. It maintains products only to the level required to support design decisions, the 

confirmation of use case operations, the allocation of requirements, and design development.” (Krikorian, 

2003) 
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For systems with components that are merely artificial elements in the decomposition hierarchy it 

can be impractical to develop class diagrams. Such components might just purposefully pass through 

broad and undefined system requirements, such as “deploy the system,” “detect and resolve anomalies,” 

or “maintain the system.” Component functionality developed in support of these requirements will only 

be visible at the lowest level components. So, it is of no value to arbitrarily force the design and 

maintenance of classes for all system levels. (Krikorian, 2003) 

3.4.1.3 Supplemental Requirements 

Krikorian writes that “use cases also identify, capture, and assign requirements related to weight, 

temperature, power, size, throughput, response time, capacity, and algorithm accuracy. These 

requirements typically come from and are allocated by a performance flow-down analysis that exists 

outside the process yet works in concert with it. Having this additional context often drives the internal 

view’s description of behavior and, subsequently, the allocation of requirements to lower-tier elements. 

This context also constrains the selection of physical-component options.” (Krikorian, 2003) 

3.4.1.4 Analysis Issues 

In practice, OOSE has revealed similar issues as other methods have had with systems that have 

cooperative, asynchronous component behavior that is independent. OOSE does specifically attempt to 

simplify use case descriptions when these techniques are introduced to personnel unfamiliar with systems 

or software engineering. By using structured English to the greatest extent possible, OOSE ensures that 

use case descriptions are easily understood by new practitioners. Asynchronous behavior is captured in 

activity diagrams which supplement use case descriptions. Today these techniques are still primarily 

accepted by software engineering. When disciplines gain further acceptance of OOSE outside of software, 

it will be possible to introduce more expressive capabilities. (Krikorian, 2003) 

Krikorian states that “because of the often asynchronous and mechanical nature of systems, use 

case descriptions must capture both sides of the interactions. That is, an internal step might state that X ?  

Y(A); that is, element X of the assembly architecture commands a service or function A of element Y. 
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However, since many systems are asynchronous, and the requesting protocol – typically a UDP (user 

diagram protocol) broadcast or a force applied to a structure – is often very different than the protocol 

returning status, usually FTP (file transfer protocol) of mechanical movement. To address this, OOSE 

uses case descriptions capture extra internal steps specifically mentioning that element Y performs 

function A. This extra care in describing element behavior ensures a forum for discussing Y(A)-unique 

issues, protocols, responses, safety, and test requirements, when necessary to gain further insight into the 

development requirements, constraints, and component roles.” (Krikorian, 2003) 

3.4 .2  Uni fy ing  Des ign - l eve l  Product s 

OOSE unifies the use case internal-view steps to develop the candidate set of use cases for the 

elements at the next level of system decomposition. During requirements analysis, an integrated 

understanding of the requirements for the interacting hierarchical elements might not exist. (Krikorian, 

2003) 

System-level sequence diagrams, unlike sequence diagrams that directly relate to classes, provide 

a means to express the interaction of the system hierarchy. Often, lower-level subsystem details become 

known later in the process; they can impact the initial understanding and consequently force a reallocation 

of functionality. (Krikorian, 2003) 

Krikorian, in Figure 14, “depicts an example of use case decomposition from the general system 

requirements to the lower-level elements. This activity expands, collapses, and updates all views (use 

case, logical, process, deployment, implementation, and assembly) for consistency. It then distills the 

resulting descriptions to identify the intended subelement behavior. (Krikorian, 2003) 
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Source: (Krikorian, 2003) 

Figure 14. System Assembly View Unification Results. 

“The expansion step addresses the potential oversight by analysts in their understanding of the 

requirements and the subsequent allocation of behavior to subtiered elements. At this time in the process, 

analysts ask, “Is element Y really required to do A?” They also examine whether Y’s expected behavior is 

exactly the same each and every time the use case sequences describe Y(A). This review uncovers issues 

and new requirements, and therefore addresses the problems caused by inadequate initial requirements. 

(Krikorian, 2003) 

“The collapse step makes up for the specification of similar capabilities. At this time in the 

process, analysts ask, “Is all the functionality necessary? Are there really this many variants? Is there a 

common thread throughout the discussions that really highlights the intended functions?” This review 

removes similar functionality and therefore prevents over-specifying requirements.” (Krikorian, 2003) 
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3.4.2.1 Element Descriptions 

Now systems engineers review the output of the previous two steps (expansion and collapse) to 

determine the use cases for the next level of system decomposition. At this point in the process, the 

system engineering team has “discovered” known or expected behavior for lower-level elements. This 

lower-level behavior constrains the current element’s internal-view descriptions. (Krikorian, 2003) 

However, unless the analysis has reached a lowest-level component, the systems engineering 

team must still allocate and decompose the requirements and behavior across the next level of underling 

elements. This step thus determines and allocates the set of use cases that best describe the behavior of 

elements in the next level subsequent to that of the current element. (Krikorian, 2003) 

The systems engineering team carries forward the resultant expanded and collapsed internal-view 

steps from the previous steps into the next-level subelements. These steps become the external view steps 

for the next-level subelement’s use cases. (Krikorian, 2003) 

3.4.2.2 Unification Benefits 

These products provide a forum for capturing requirements and constraints that apply globally to 

an element. This step also provides a forum for capturing and resolving design decisions and issues. 

(Potts, 1998) It also forms the work package for element development and identifies functional, 

performance, timing, throughput, sizing, and other requirements that apply globally to the element. This 

unification and subsequent lower-level use case development continues for each level of system 

decomposition until the process reaches the lowest-level components. (Krikorian, 2003) 

3 .5  Bene f i t s  and  Lessons  Learned  

Krikorian concludes that “up-front planning and buy-in to this disciplined approach is critical to 

the success of multidisciplined teams that engineer solutions. The disciplined approach described here has 

netted untold rewards in system understanding and insight far earlier in product development than with 

previous approaches. Using this approach, developers can distribute and allocate functions, interfaces, 
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operations, states, and modes of operation consistently onto the supporting subsystems.” (Krikorian, 

2003) 
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CHAPTER IV                                                                                                                                                                             
SUMMARY AND CONCLUSIONS 

4 .1  Cu l tura l  Barr i ers  to  Implement ing  UML for  Sys tems  Eng ineer ing 

The preeminence of the Unified Modeling Language (UML) as the prevailing standard for object 

oriented software specification has been has been noted by systems engineers and engineering managers 

for several years now. While progress toward extending UML for the systems engineering domain has 

been made, it is not clear that widespread systems engineering acceptance of UML is going to happen any 

time soon. (Steiner, 2003) 

4 .1 .1  Barr ier  #1:  Lack  o f  Mode l- Dr iven  Exper i ence  

UML, being a modeling language, imposes a model-driven approach to implementation. 

Regrettably, resistance can be overwhelming, particularly to an unsophisticated organization or customer. 

A pure model driven approach is rarely implemented by systems engineering, and few organizations can 

point to concrete successes. While bidding model driven systems engineering sounds great in the proposal 

phase, it is rarely bid properly. The learning curve is rather steep for an organization’s first use by systems 

engineering (The same was true for initial use of OOA/OOD by software engineering a decade ago). As a 

result, the required front-loading of effort to successfully implement a model driven systems engineering 

effort is seldom anticipated or funded. (Steiner, 2003) 

Steiner states that “a sophisticated customer will certainly appreciate the validity, adaptability, 

and integrity of a model driven systems engineering approach. A less sophisticated customer will 

probably become impatient with the level of rigor required up front “just to get the specification out.” The 

power and elegance of a fully traceable, integrated and allocated system behavioral model will be lost on 

a customer who sees only potential delays in the start of coding. Managers forced to live with a meager 

budget and tight schedule (remember the cost proposal?) will gladly sacrifice the promises of a system 

model for the short term gain of meeting a delivery date, and getting this uneasy customer off his/her 

back. This is particularly true if the Systems Architect has not provided a constant, reassuring status of the 



 41 

system modeling activity to management, or has failed to deliver on short-term milestones. Any delay in 

the early phase of a tight program will be projected into a big problem, and will be fatal to the system 

modeling effort!” (Steiner, 2003) 

Our current systems engineering metrics that work well for managing document generation in 

current systems engineering processes do not translate well to model driven approaches. Specification 

page counts or requirement counts are not satisfactory for assessing the progress of system modeling. 

Instead, Steiner suggests than “new measures like requirement-behavior-component linkage (horizontal 

completeness), or enterprise-system-subsystem decomposition (vertical consistency) may need to be used 

to assess progress. A lack of historical trend date makes interpreting these new measures problematic, and 

will not inspire the necessary confidence when time and budget get tight.” (Steiner, 2003) 

Overcoming this first barrier must involve a resolute effort to characterize and measure model 

driven approaches, collect lessons learned, and educate program managers, systems engineers, and 

customer communities on their application and management. (Steiner, 2003) Unfortunately, these are all 

unknown until OOSE has been deployed. 

4 .1 .2  Barr ier  #2:  Unrea l i s t i c  Expecta t ions 

The emergence of UML as the indisputable modeling language for object-oriented software 

development has caused some observers to consider it the answer for a wide variety of development 

process issues. To these observers, the use of UML as a language for systems engineering holds the 

promise of combining the systems and software engineering processes, resulting in what they predict 

“dramatic cost reduction and productivity gains!” This expectation is unrealistic, especially in light of the 

different objectives of systems and software engineering. (Steiner, 2003) 

Even when the differing roles of systems and software engineers are clearly understood, the 

expected “smooth transition” associated with dual use UML remains. It is clear that a common language 

will certainly facilitate communication, but it is not clear that systems and software engineering will 

perform their tasks using the same model. (Steiner, 2003) 
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Since software engineering has seen productivity gains associated with using object-oriented 

techniques which uses UML as the modeling language, similar expectations of productivity gains will be 

expected when OOSE, which utilizes UML with extensions, is applied to systems engineering. Again, 

this is not realistic – the UML modeling language is not the root cause of software productivity gains. 

These are caused by mature processes and more efficient languages to develop code in such as Java. 

Nevertheless, the potential benefits of a model driven, UML facilitated OOSE process seem to capture the 

imagination of management. Steiner points to expected panaceas as “quick response to requirements 

changes, turnkey specifications from an instrumented system model, and the potential of “error free” 

systems engineering! While this hype provides good marketing and rationale for a lower cost bid, it sets 

up a very real barrier to realistic implementation!” (Steiner, 2003) 

Steiner believes that “overcoming this second barrier requires a level of maturity that only comes 

with time and experience. OOSE offers a promise of real improvement in the allocation of requirements, 

and in bridging systems and software models. To date, this has been realized only through anecdotal 

evidence. Potential users must carefully consider the specifics of their application, and details of similar 

applications, before any claims can be made.” (Steiner, 2003) 

4.1 .3  Barr ier  #3:  Naïve  Fa mi l i a r i ty  w i th  UML 

Steiner notes that “the OMG has consistently emphasized flexibility over elegance in the 

development of UML. The combination of notations in the original UML concept was never intended to 

represent a streamlined, minimalist language. UML was meant to be extended to embrace new methods 

and approaches, and relied on the tools (rather than the language) to enforce subtleties of method. The 

resulting language has notational constructs both dangerously obvious and deceivingly subtle! What 

could be simpler than sequence diagrams, state diagrams, activity diagrams, and swimlane diagrams? 

Every systems engineer can easily understand these concepts, and has probably used them already! Even 

class diagrams seem rather familiar to the systems engineer, once past the general notion of 

‘generalization’ and ‘aggregation.’ But then things get more complicated – what does the ‘black’ diamond 
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mean? Use case diagrams can be difficult for an ‘old school’ systems engineer, and the distinction 

between ‘extends’ and ‘includes’ can be baffling!” (Steiner, 2003) 

Since UML was designed to be the unifying modeling standard for OOA/OOD, it was not 

designed to support what most systems engineers need to produce. Steiner observes that “in theory, UML 

classes can be used to represent anything, even systems and subsystems that are not necessarily software. 

The expression of a system model can, in theory, be treated as an imperative, which the system software 

must meet. That is not what the notation was built for, however. The subtleties of class notation directly 

support expressions of software structures, like inheritance. Bending the use of the notation to express 

something as mundane as a parts tree or bill of materials looses much of the richness of the language, and 

is downright confusing to an experienced software engineer. UML ‘components’ do not easily map to 

system physical architecture and UML ‘interfaces’ do not easily map to system physical and functional 

interfaces. Building an interface specification from a UML compliant model can be a frustrating exercise 

for a systems engineer, and will undoubtedly require the use of some ‘custom’ stereotypes. Using the 

‘includes’ relationship between Use Cases to express a functional hierarchy is inconsistent with the 

original intent of that relationship.” (Steiner, 2003) 

4 .2  Wrap up  

In moving UML from supporting OOA/OOD to OOSE, we must note that systems engineering 

and software engineering are different disciplines with different objectives. Software engineers seek 

inventive ways to meet and refine requirements, most of which they perceive as reassuringly unchanging. 

Systems engineers seek innovative ways to validate and bound requirements, most of which they 

understand as very changeable. To software engineering requirements are the starting point while to 

systems engineering requirements are the product. While OOSE does not provide the definitive modeling 

language for systems engineering development, it is soon likely to become the standard. (Steiner, 2003) 
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APPENDIX A                                                                                                                                     
CONCEPT OF OPERATIONS FOR CRUISE CONTROL SYSTEM 

 
When the vehicle is initially started, the cruise control system is off. The driver may at 

anytime later turn the cruise control system on by pressing the “on” button. Following turning the 

cruise control system on, the driver may activate the cruise control system by pressing the “set” 

speed button providing that the vehicle is going at least 30 (TBR) mph. When activated, the 

cruise control system will maintain a constant speed by accelerating and decelerating the engine. 

If the driver presses the brake pedal, the cruise control system will become deactivated thus no 

longer controlling the engine. The driver can later reactivate the cruise control system by pressing 

the “resume” button and the cruise control system will resume controlling the engine’s speed and 

bring the vehicle back to the previously set speed. If the vehicle is going less than the previous set 

speed, the vehicle will accelerate at a high rate to resume to the set point. The driver may wish to 

accelerate to near the speed of the set point prior to pressing the “resume” button to avoid rapid 

acceleration. If the driver desires the cruise control system to be set at a higher speed, the driver 

must accelerate to the new speed and then press the “set” button. If the driver desires the cruise 

control system to be set at a lower speed, the driver must first slow the car to the new desired 

speed and then press the “set” button. The driver can turn off the cruise control system by 

pressing the “off” button and the cruise control system will not retain the latest set speed setting. 

The cruise control system will also be turned off when the engine is turned off. 

 
 


