
Utilizing Open Source Software

For Military Applications

Soldier’s Personal Situation Display

A Case Study of Rapid-Prototyping using

Axiomatic Design and

Component Oriented Software Engineering

By

Jeff B. Smith

A MASTER OF ENGINEERING REPORT

Submitted to the College of Engineering at
Texas Tech University in

Partial Fulfillment of
The Requirements for the

Degree of

MASTER OF ENGINEERING

Approved

Dr. Atila Ertas

Dr. T.T. Maxwell

Dr. M.M. Tanik

Dr. Chris Letchford

October 21, 2006

ACKNOWLEDGEMENTS

 I would like to take a moment to express my gratitude to Raytheon and all those involved in the

Texas Tech Systems Engineering program for providing me the opportunity to further my education. It

was a great honor and the effort wasn’t wasted. I intend to utilize my new skills by doing everything

within my means to help make Raytheon the best defense contractor in the world.

 Secondly, I would like to thank my family for their patience and support. Very special thanks go

to my wife Laura and my daughters (Kady, Carlee and Michael) for taking up all my slack. Thanks for

carrying on without Dad for a year. “I’ll make it up to you – I promise “. My sincere hope is that my

children now understand and appreciate that you never ever stop learning - even an old guy like me.

 Last but not least, thanks to the entire Texas Tech staff for assembling such a phenomenal

program. If I were to sit down and design the perfect master’s level engineering program for working

professionals – I expect I’d arrive at what you have assembled. Thanks don’t begin to express my

feelings. In any event – Thanks to Professors Ertas, Maxwell, Tate, Tanic, Yee, Dogru, Vaughn, Green,

Iyengar and all the others who took valuable time to invest in my education.

 2

Table of Contents

ACKNOWLEDGEMENTS ... 1

TABLE OF CONTENTS ... 2

DISCLAIMER .. 4

ABSTRACT .. 5

TABLE OF FIGURES.. 6

LIST OF TABLES.. 8

INTRODUCTION .. 10

CHAPTER 2.. 11

BACKGROUND ... 11

CHAPTER 3.. 13

DESCRIPTION... 13

3.0 DESCRIPTION .. 13
3.1 RAPID PROTOTYPING WITH OPEN SOURCE SOFTWARE ... 15
3.2 COMMERCIAL OFF THE SHELF COMPONENTS.. 16
3.3 AXIOMATIC DESIGN ... 19
3.4 COMPONENT ORIENTED SOFTWARE DESIGN .. 19
3.5 GLOBAL POSITIONING SYSTEM .. 20
3.6 WIRELESS NETWORKS.. 22
3.7 AGENT-BASED TECHNOLOGY .. 24
3.8 OPEN SOURCE SOFTWARE .. 26

CHAPTER 4.. 30

SYSTEM DESIGN AND IMPLEMENTATION ... 30

4.0 CONCEPT AND PROBLEM STATEMENT .. 30
4.1 SYSTEM DESIGN AND IMPLEMENTATION .. 31
4.2 SYSTEM MODEL ... 32

4.2.1 Soldiers Personal Situation Display.. 32
4.2.2 Socket Compact Flash 802.11b Wireless Adapter .. 33
4.2.3 Wireless 802.11 Network Infrastructure ... 34
4.2.4 Open Source Host/Client Software ... 36
4.2.5 Global Positioning System Module .. 37

4.2.5.1 Global Positioning System External Unit .. 37
4.2.5.2 GPS Communications Mode.. 38

4.3 AXIOMATIC DESIGN DETAIL .. 39
4.3.1 Define Functional Requirements of the Software System .. 39
4.3.2 Mapping Domains to Independent Software Functions .. 41
4.3.3 Define Information Content for Software Systems... 42
4.3.4 Decompose FRs, DPs, PVs, and Software Modules ... 43

4.3.4.1 Functional Requirement Decomposition.. 45
4.3.4.1.1 Data Management Subsystem... 46
4.3.4.1.2 Agent Based Expert System ... 47
4.3.4.1.3 Geo-Orientation Subsystem.. 54
4.3.4.1.4 GIS Display Mapping... 57
4.3.4.1.5 RF Communications Subsystem (Wi-Fi).. 59

 3

4.3.5 Definition of Modules... 60
4.3.5.1 Component Oriented Software Engineering Detail.. 60
4.3.5.2 Test-Driven Approach for COSE... 62
4.3.5.3 Module Detail, Attributes, and Operations .. 64
4.3.5.4 Establishment of Interfaces.. 64

4.4 GPS STATISTICAL ACCURACY PREDICTIONS.. 66
4.4.1 Calculating Horizontal Position Accuracy.. 67
4.4.2 GPS Accuracy Conclusions (Is it good enough?) ... 69

4.5 802.1X WI-FI VS. WIMAX (STATISTICAL RANGE PREDICTIONS) .. 70
4.6 UNIT SIMULATION AND TESTING.. ERROR! BOOKMARK NOT DEFINED.
4.7 HUMAN FACTORS ... ERROR! BOOKMARK NOT DEFINED.

CHAPTER 5..ERROR! BOOKMARK NOT DEFINED.

DOD OPEN SOURCE BASED PROGRAMS ...ERROR! BOOKMARK NOT DEFINED.

5.0 OPEN SOURCE ACROSS MILITARY BRANCHES ERROR! BOOKMARK NOT DEFINED.
5.1 U.S. ARMY FUTURE COMBAT SYSTEMS (FCS)................................... ERROR! BOOKMARK NOT DEFINED.
5.2 U.S. MARINE CORP .. ERROR! BOOKMARK NOT DEFINED.
5.3 U.S NAVY (P-8 AND DD(X)).. ERROR! BOOKMARK NOT DEFINED.
5.4 U.S. AIR FORCE.. ERROR! BOOKMARK NOT DEFINED.

CHAPTER 6..ERROR! BOOKMARK NOT DEFINED.

SUMMARY AND CONCLUSION ...ERROR! BOOKMARK NOT DEFINED.

APPENDIX..ERROR! BOOKMARK NOT DEFINED.

7.1 OPEN ZAURUS .. ERROR! BOOKMARK NOT DEFINED.
7.2 GARMIN GPS ACTUAL ACCURACY RESULTS ERROR! BOOKMARK NOT DEFINED.
7.3 SPSD PROTOTYPE PHOTOGRAPHS.. ERROR! BOOKMARK NOT DEFINED.
7.4 SOFTWARE TOOLS .. ERROR! BOOKMARK NOT DEFINED.

7.4.1 Qtopia Developer GUI... Error! Bookmark not defined.
7.5 EXAMPLES .. ERROR! BOOKMARK NOT DEFINED.

7.5.1 Qtopia Example GUI (Linux/x86) ... Error! Bookmark not defined.
7.5.2 OpenMap Example Application... Error! Bookmark not defined.
7.5.3 Cougaar Overview ... Error! Bookmark not defined.

REFERENCES ... 71

 4

DISCLAIMER

This document was prepared as a requirement for graduation with Masters of Engineering from Texas

Tech University. While this document is believed to contain correct information, no warranty expressed

or implied, exists regarding the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or claims that its use would not infringe upon privately owned rights.

Reference herein to any specific commercial product, process, or service by its trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

favoring by myself, Raytheon, or Texas Tech University. The views and opinions contained within are

expressly my own and do not represent Raytheon, Texas Tech or the United States Government.

 5

ABSTRACT

 As a case study or exercise using Rapid-Prototyping, Axiomatic Design (AD) and Component

Oriented Software Engineering (COSE), I propose to design and develop a prototype unit I am calling the

Soldier’s Personal Situation Display (SPSD). This exercise is in partial fulfillment of the requirements

for the award of the Masters of Engineering degree in Systems Engineering from Texas Tech University.

 It is also my intent to discuss in detail all aspects of using, modifying and leveraging Open Source

software in a Military/Industrial environment. I intend to highlight and discuss what Open Source

software is, the pros and cons, benefits, problems and lessons learned while using Open Source software

from an engineering standpoint (specifically as applied to Rapid Prototyping using Axiomatic Design and

Component Oriented Software Engineering). I will focus on my experiences in designing and building the

prototype unit using Axiomatic Design, Component Oriented Software Engineering with open source

software and commercial off the shelf hardware.

 6

Table of Figures

FIGURE 1: SOLDIER USING PLGR GPS [ROCKWELL COLLINS] ... 14
FIGURE 2: RAPID PROTOTYPING PROCESS [DR. DOBBS’S JOURNAL] .. 16
FIGURE 3: COTS-BASED SOFTWARE COMPLEXITY REUSE [CARNEY AND LONG] .. 18
FIGURE 4: AXIOMATIC DESIGN PROCESS [3] .. 19
FIGURE 5: COMPONENT ORIENTED ENGINEERING PROCESS [7].. 20
FIGURE 6: GPS SATELLITE CONSTELLATION [NASA].. 22
FIGURE 7: AD-HOC OR PEER TO PEER NETWORK ... 23
FIGURE 8: HARDWARE ACCESS POINT.. 23
FIGURE 9: NETWORK USING SOFTWARE ACCESS POINT ... 24
FIGURE 10: SOFTWARE AGENT TYPOLOGY... 25
FIGURE 11: INTELLIGENT AGENT ... 25
FIGURE 12: MOBILE AGENT.. 26
FIGURE 13: SPSD EXAMPLE SCREENS [ROCKWELL COLLINS] ... 30
FIGURE 14: SHARP SL-5500D .. 32
FIGURE 15: COMPACT FLASH WI-FI CARD [SOCKET TECHNOLOGY] .. 33
FIGURE 16: HMMWV MOBILE COMMUNICATIONS PLATFORM ... 34
FIGURE 17: ES520 WIRELESS BRIDGE [FORTESS SYSTEMS]... 35
FIGURE 18: GPS 12 [GARMIN INTERNATIONAL] ... 37
FIGURE 19: REQUIREMENTS DECOMPOSITION TO LEAF LEVEL VIA AXIOMATIC DESIGN.. 43
FIGURE 20: RPMFIND WEB BASED SEARCH ENGINE... 45
FIGURE 21: LAND WARRIOR COMBAT SYSTEM .. 48
FIGURE 22: EYEKON SYSTEM ... 49
FIGURE 23: FUTURE WARRIOR SYSTEM (FWS) SYSTEM [U.S. ARMY]... 50
FIGURE 24: AGENT ENHANCED WIRELESS NETWORK .. 51
FIGURE 25: AGENT-BASED GUIDANCE DISPLAY [(MODIFIED) AGILE SYSTEMS] .. 51
FIGURE 26: AGENT BASED WARNING SYSTEM ... 52
FIGURE 27: COUGAAR SERVICE HIERARCHY .. 53
FIGURE 28: PRECISION LIGHTWEIGHT GPS RECEIVER (PLGR) [ROCKWELL COLLINS].. 54
FIGURE 29: MODIFIED NMEA SENTENCE ... 56
FIGURE 30: FUNCTIONING GPSD DISPLAY (SATELLITE EPHEMERIS)... 56
FIGURE 31: FUNCTIONAL QPEGPS/SPSD DISPLAY ... 57
FIGURE 32: OPENMAP INFRASTRUCTURE [BBN TECHNOLOGY] .. 58
FIGURE 33: HMMWV-BASED MOBILE MAPPING VEHICLE [U.S. ARMY]... 58
FIGURE 34: TEST-DRIVEN DEVELOPMENT CYCLE .. 62
FIGURE 35: PROPOSED AXIOMATIC DESIGN FEEDING TEST-DRIVEN DESIGN ... 63
FIGURE 36: HIGH-LEVEL ARCHITECTURE ENVIRONMENT [PITCH HLA] .. 65
FIGURE 37: GPS ACCURACY CORRELATIONS ... 66
FIGURE 38: CIRCLE ERROR PROBABILITY/DISTANCE ROOT MEAN SQUARE ERROR SCATTER PLOT 69
FIGURE 39: WI-FI VS. WIMAX [WIMAXX.COM] ... 71
FIGURE 40: GOOGLE EARTH PHOTO OF GPS TEST SITE ... ERROR! BOOKMARK NOT DEFINED.
FIGURE 41: USGS TOPOGRAPHIC BENCHMARK ... ERROR! BOOKMARK NOT DEFINED.
FIGURE 42: SOSCOE LAYERS [BOEING] ... ERROR! BOOKMARK NOT DEFINED.
FIGURE 43: WINS-NG WIRELESS SENSOR [SENSORIA].. ERROR! BOOKMARK NOT DEFINED.
FIGURE 44: FRAMEWORK FOR USER-SPACE DRIVERS [SENSORIA] ERROR! BOOKMARK NOT DEFINED.
FIGURE 45: U.S. NAVY P-8 [BOEING]... ERROR! BOOKMARK NOT DEFINED.
FIGURE 46: DD(X) DESTROYER [OFFICE NAVAL RESEARCH] ERROR! BOOKMARK NOT DEFINED.
FIGURE 47: F22 AND F35 FIGHTER AIRCRAFT .. ERROR! BOOKMARK NOT DEFINED.
FIGURE 48: MILS ARCHITECTURE [RTC JOURNAL] ... ERROR! BOOKMARK NOT DEFINED.
FIGURE 49: SHARP SL-5500 WITH GARMIN GPS-12... ERROR! BOOKMARK NOT DEFINED.
FIGURE 50: PROTOTYPE FIELD TEST... ERROR! BOOKMARK NOT DEFINED.

 7

FIGURE 51: QT DESIGNER... ERROR! BOOKMARK NOT DEFINED.
FIGURE 52: OPENMAP “HELLO WORLD” APPLICATION ERROR! BOOKMARK NOT DEFINED.
FIGURE 53: COUGAAR [DARPA] ... ERROR! BOOKMARK NOT DEFINED.

 8

List of Tables

TABLE 1: INFORMAL SPSD FUNCTIONAL REQUIREMENTS.. 15
TABLE 2: SHARP SL-5500D SPECIFICATIONS ... 33
TABLE 3: COMPACT FLASH WI-FI SPECIFICATIONS .. 34
TABLE 4: ES520 SPECIFICATIONS ... 35
TABLE 5: AXIOMATIC DESIGN DERIVED SOFTWARE COMPONENTS .. 36
TABLE 6: GARMIN GPS-12 SPECIFICATIONS ... 37
TABLE 7: DESIGN CONSTRAINTS... 40
TABLE 8: TOP LEVEL FUNCTIONAL REQUIREMENTS ... 41
TABLE 9: TOP LEVEL DESIGN PARAMETERS ... 42
TABLE 10: TOP LEVEL DESIGN MATRIX ... 46
TABLE 11: SECONDARY DATA MANAGEMENT DESIGN MATRIX... 46
TABLE 12: AGENT-BASED SUBSYSTEM DESIGN MATRIX.. 47
TABLE 13: SECONDARY GEO-LOCATION DESIGN MATRIX .. 55
TABLE 14: SECONDARY RF COMMUNICATIONS DESIGN MATRIX ... 59
TABLE 15: GPS SAMPLE NAVIGATION DATA POINT 1.. ERROR! BOOKMARK NOT DEFINED.
TABLE 16: GPS SAMPLE NAVIGATION DATA POINT 2.. ERROR! BOOKMARK NOT DEFINED.
TABLE 17: GPS SAMPLE NAVIGATION DATA POINT 3.. ERROR! BOOKMARK NOT DEFINED.
TABLE 18: GPS SAMPLE NAVIGATION DATA POINT 4 .. ERROR! BOOKMARK NOT DEFINED.

 9

 10

Chapter 1

Introduction

 As United States combat Soldiers and Marines are deployed more and more frequently to

geographically restricted and hostile urban terrain, the importance of each war-fighter being cognant of

his or her immediate situation and surroundings becomes apparent. One can use as a textbook example,

the events that took place in Mogadishu, Somalia, where U.S. Army Rangers and Special Forces units

were severely hampered in their ex-filtration from a mission by a lack of orientation and situational

awareness, as well as a lack of intelligence and the location of their opposing forces. On the other hand, in

some cases the war-fighter may be overwhelmed with information and have no clear way to quickly

process the incoming data. These problems call for some sort of automated assistance for the war-fighter

in rapidly processing, analyzing and utilizing digital intelligence.

 A similar incident where my proposed hardware (Soldier’s Personal Situation Display) unit

would have helped avoid if not actually prevented casualties is the case involving the former NFL

professional football player turned U.S. Army Ranger – Pat Tillman. As you may recall Pat Tillman was

killed in action by so-called “friendly fire” in Afghanistan after his squad was separated from their

convoy while traversing a particularly dangerous section of road known to be frequented by hostile

forces. Pat Tillman’s squad of Rangers was taken under fire mistakenly by members of his own platoon,

when they (Tillman’s unit) were misidentified as an enemy combatant force. Had members of both U.S.

Army units been equipped with my proposed hardware (SPSD), they would have been able to pinpoint

the exact geographical location of both their own unit and Tillman’s unit to within a few meters via

Global Positioning System (GPS) coordinates – thus avoiding mistakenly firing on members of their own

forces.

 11

CHAPTER 2

BACKGROUND

 Friendly fire (also known as fratricide, non-hostile fire, or blue-on-blue engagement) is a term

defined as an attack on friendly forces by other friendly forces. It may be either deliberate (incorrectly

identifying a target as the enemy) where fire brought to bear on enemy forces accidentally ends up hitting

one's own troops; or due to errors of identification where friendly troops are mistakenly attacked in the

belief that they are enemy forces (such as the Pat Tillman incident). So-called “friendly fire” incidents

such as this were common during the first and second world wars, where troops fought in close proximity

to each other and targeting was relatively inaccurate. In general, highly mobile battles and battles

involving troops from many nations are more likely to result in this kind of incident. The following

statistics involving friendly fire incidents are provided by the Pentagon:

• World War II: 21,000 (16%)

• Vietnam War: 8,000 (14%)

• Gulf War: 35 (23%)

• Invasion of Afghanistan (2002): 4 (13%) [1]

 High casualty rates in Iraq and Afghanistan from Improvised Explosive Devices (IEDs) point to

soldiers having inadequate situational awareness. Recent research has focused primarily on detection of

IEDs, but I intend to approach the problem from a different direction - IED Avoidance. By leveraging the

following prior research:

[1] Fatalities were Canadian Soldiers, not American. Caused when a US fighter pilot dropped a 500 lb bomb while
Canadian soldiers were performing a live fire exercise on April 17, 2002

 12

• Smart Agent Technology

o Peters, Look, Quigly, Shrobe, and Gajos [1]

o Dolev, Gilbert, Schiller, Shvartsman and Welch [2]

o Gray, Kotz, Cybenko and Rus, Dartmouth, 1998 [3]

o Wendleken, McGrath, Blike [4]

o Brewington, Gray, Moizumi, Kotz, Cybenko, Rud [5]

• Component Oriented Software Engineering / Axiomatic Design

o Dogru and Tanik [6], Dogru [7]

o Suh and Doh [8]

o Repenning, Ioannidou, and Payton [9]

• Open Source Software Integration

o Joe Jacob [10]

o Martin, Cheyer, and Moran [11]

o Mitre Corp [12]

 The above noted areas of research (“Smart Agents”, Component Based Engineering, and Open

Source Software) all deal in theoretical design or applications. I intend to follow-through to the next

logical step and develop a “real” system, leveraging and utilizing preexisting open-source software and

technology based on the previous mentioned research. Smart Agent and general AI (Artificial

Intelligence) systems exist primarily in the lab or hosted onboard large processors. It is my intent to push

the technology down the chain to the actual soldier in the field, automating and connecting what are now

autonomous technologies.

 13

Chapter 3

DESCRIPTION

3.0 Description

 “If you load a mud foot down with a lot of gadgets that he has to watch, somebody a lot

more simply equipped – say with a stone ax – will sneak up and bash his head in while he is

trying to read a vernier.”

 -- Robert Heinlein, Starship Troopers

 The Soldiers Personal Situation Display (SPSD) will provide known locations of all friendly

forces operating in the immediate area via the use of individual Global Positioning Receivers, each

transmitting its own unique location to peers within an encrypted, ad-hoc wireless (802.11) network,

shared ONLY among the operators/end-users of the SPSD(s). Admittance into the ad-hoc wireless

network shall be via password and all transmitted data shall be required to be strongly encrypted via

freely available open source software.

 The SPSD will also provide the dismounted infantryman an embedded Knowledge Based (KB)

System using “Smart Agents” that will assist the soldier in making tactical decisions (avoiding hazardous

areas, etc.). Prior research [13] has shown that soldiers currently lack the skills and equipment to quickly

and accurately record and report intelligence worthy information. The SPSD will help alleviate this

problem. Says one U.S. Army officer, Major Ray: “We had lots of patrols going out, but very few reports

coming back and some of their reports were not going into the system.” Collin Agee, director,

intelligence, surveillance and reconnaissance integration at the U.S. Army G-2 office, notes that, out of

400,000 patrols conducted in the Iraq War, only 6,000 reports reached brigade level. The G-2

(intelligence) assessment was that rear-area soldiers were not trained to do reporting and were not focused

 14

on situational awareness input. Hence there is ample evidence a need for a device like the Soldiers

Personal Situation Display exists.

 Using both Axiomatic Design and Component Oriented Software Engineering (COSE)

techniques, it is my intent to rapid-prototype the SPSD, which will be a portable, handheld digital

assistant much like the Personal Digital Assistants (PDAs) many of us currently use today (Blackberry,

Palm-Pilot, etc).

Figure 1: Soldier using PLGR GPS [Rockwell Collins]

I also intend to restrict my choices of software to Open Source/Commercial off the Shelf (COTS)

components exclusively in order to fully exploit and demonstrate the benefits of open-source software

within the COSE model.

 The Soldier’s Personal Situation Display will provide the war-fighter with a small, portable,

handheld, digital graphic display unit with touch-pad input. It will provide a visual, GPS-driven

geographic situation display of the soldier’s current position, as well as the current position of other

friendly units in the immediate, selectable area. It will provide a data logging and recording function

allowing the dismounted infantryman to capture and record intelligence data or other information for later

play-back (i.e. After Action Reports/AAR). It will also provide a simple point-to-point messaging service

 15

(ala AIM or “Instant Messenger”). In closing it will provide the following:

� Small, Cheap and Handheld!

� Basic Navigation Function via Global Positioning System (GPS)

� Provide Location of ”Friendly” forces within the wireless network

� Agent-Based [Artificial Intelligence] Soldier’s Assistant

� Basic Communication and Proximity Warning Function

� Provide Wireless 802.11 Access

� Basic Data Reporting/Recording /Recalling Function

� Integral Onboard Encryption

� Linux/Open Source based Software

Table 1: Informal SPSD Functional Requirements

3.1 Rapid Prototyping with Open Source Software

 “Rapid-Prototyping” is defined as the engineering process of quickly putting together a working

model or prototype in order to test various aspects of a design, illustrate ideas or features, and gather early

user feedback. Using rapid prototyping techniques was fundamental to the design process of the Soldiers

Personal Situation Display as the core effort of the development of the SPSD was integrating COTS

(Commercial-Off-The-Shelf), open-source software packages onto the core processor as quickly as

possible, with minimal effort and zero or minimal induced software bugs. Limiting the core software to

preexisting open-source software packages and modules limited risk and cost and enabled the leveraging

of tested, debugged software.

 The integration of the software onto the core CPU was staged iteratively in order to enable

testing, verification and performance in multiple cycles. This enabled errors, deficiencies in design or

faulty integration practices to be discovered early and quickly corrected. When the prototype SPSD was

sufficiently tested and met the functional requirements (robustness, manufacturability and other design

goals) the unit was deemed ready for evaluation. The benefits of following a rapid-prototyping

 16

development cycle while developing the SPSD were:

� Prototypes are easily modified

� Provides a proof of concept necessary to attract funding

� Early visibility of the prototype gives users an idea of system behavior

� Higher probability of end-user satisfaction

� Encourages participation among users and producer

� Enables a faster delivery of working system

� Cost effective (Development costs reduced)

Figure 2: Rapid Prototyping Process [Dr. Dobbs’s Journal]

3.2 Commercial off the Shelf Components

 A Commercial Off-The-Shelf or (COTS) component is a product that is used with little or no

modification, is easily integrated, and designed to operate with existing system(s) essentially as-is. Added

benefits of utilizing COTS based software are low cost and high quality. A good example of a COTS

 17

software component would be software bought by the computer user i.e. word processing and office

suites such as “OpenOffice” or operating systems (Linux). There are further subtypes of COTS

components such as GOTS, MOTS, NOTS or NDI. The following subtypes of COTS products are

defined:

I. A Government Off-The-Shelf (GOTS) component is a product that is developed and provided by

the government agency for which it was created. It may be either developed by the agency itself

or developed by a third party under contract from the agency to develop the component based on

specifications provided. When dealing with the government or government agency as a customer,

the acquiring agency may prefer to require GOTS components, as the government typically

maintains control over all aspects of GOTS components.

II. A Modifiable Off-The-Shelf (MOTS) software component is a COTS component whose source

code can be altered or modified. Another name for Open Source software might by a MOTS

component. The component may be altered or modified by the end-user to fulfill the requirements

of the specifications. Different licensing rules may apply to MOTS software (GNU GPL license,

Free Software License (FSF), or other).

III. A Niche Off-The-Shelf component or (NOTS) product refers to vendor-developed, typically

proprietary software that is designed and developed for a specialized, narrow market, as opposed

to the broad market for COTS products.

IV. Non-Developmental Item. An NDI is any previously developed component used exclusively by

the contracting customer, and is typically not commercially available. Furthermore it covers any

component that requires minor modifications or modifications of the type customarily available in

the commercial marketplace in order to meet the functional requirements of the customer’s

specifications.

 18

Carney and Long [2] define a usability modification matrix helpful in visualizing the inherent

complexity of (re)using COTS-based software products (Figure 3), where Source is defined as the

origin of the component, and Modification is defined as degree of modification of the component

(possible or required).

Figure 3: COTS-based Software Complexity Reuse [Carney and Long]

[2] Carney and Long, “So What do You Mean By COTS?”, IEEE Software March 2000

 19

3.3 Axiomatic Design

 By definition - Axiomatic Design or AD is a systematic, scientific approach to design. It guides

designers through the process of first breaking up customer attributes or needs (CAs) into functional

requirements (FRs), then further refining these requirements into design parameters (DPs), and finally

deriving a process which produces those design parameters with the help of process variables or methods

(PVs), thus creating a logical progression through the four domains of the design world: Customer,

Functional, Physical, and Process as seen in Figure 4.

Figure 4: Axiomatic Design Process [3]

3.4 Component Oriented Software Design

 Component Oriented Software Engineering (COSE) assumes the availability of preexisting

software entities, which may or may not be object-oriented in nature, and are currently available for the

designer to leverage and use – much like commercial off the shelf hardware components. Just as an

electrical engineer might pick and choose from a collection of capacitors, diodes, op-amps, etc. to build a

 20

circuit card assembly, the software engineer might select a set of components such as a signal-processing

software module or a data encryption software module to assemble a functioning software package. See

Figure 5.

 A common example of a software component might be a browser plug-in that enables the end-

user to view an image or video (MPEG), or listen to a particular song or piece of music (MP3, WAV, etc.)

Figure 5: Component Oriented Engineering Process [7]

3.5 Global Positioning System

 What is GPS? The Global Positioning System is a space-based constellation of satellites

combined with a network of terrestrial ground stations used for monitoring and control, collectively used

for radio-navigation. An array of satellites orbits the Earth providing accurate information on position,

[3] Basem, “Axiomatic Quality: A Framework for Axiomatic Design and Robust Integration”, IDPT 2005

 21

velocity, and time anywhere in the world and under any weather condition.

 The GPS satellite system originally developed by the United States Department of Defense is

officially named NAVSTAR (Navigation Signal Timing and Ranging) and is managed by the 50th Space

Wing at Schriever Air Force Base and is available for use for many applications. GPS has become a

widely used global utility, used for navigation on land, sea, and air around the world, as well as an

indispensable tool for cartography and surveying. GPS also provides as a service, an extremely precise

time reference source which is used in telecommunications and wide branches of scientific research.

 In late 2005, the first in a series of enhanced capability GPS satellites was added to the orbiting

constellation, offering new capabilities, including a second civilian GPS transponder/signal called L2C

for improved accuracy and more robust reliability. In the coming years, additional satellites will extend

the coverage of L2C and a third and fourth civilian signal are also scheduled to augment the system, as

well as provide advanced military capabilities. The Wide-Area Augmentation System (WAAS), available

since August 2000, increases the accuracy of GPS signals to within 6 ft for receivers capable of

supporting WAAS. The accuracy of GPS provided navigation can be improved even further, to about 1

cm over short distances using Differential GPS (DGPS), which uses an additional fixed GPS beacon to

further reduce error.

 The GPS constellation consists of 24 satellites in circular orbits, where the orbits are designed so

at least four satellites are always within reception of any GPS receiver from most any place on earth.

There are four satellites grouped in each of six orbital planes and each satellite circles the Earth twice

each day at an altitude of 11,000 miles. The constellation also provides three spare satellites parked in

orbit. Each orbit is inclined 55 degrees from the equatorial plane with a right ascension of sixty degrees.

 The flight paths of the satellites are measured by five ground control stations located in Hawaii,

Colorado Springs CO, Kwajalein Island, Ascension Island, and Diego Garcia in the Indian Ocean. The

master control station in Colorado processes the combined observations and sends updates to the satellites

 22

through the other ground stations. The transmitted updates are used to synchronize the atomic clocks

onboard each satellite to within one microsecond and also adjust the ephemeris of the satellites' internal

orbital model to match the observations of the satellites from the ground.

 Each satellite continuously rebroadcasts the exact time according to its own internal atomic clock

along with data that includes the orbital elements of the satellite's precise position, satellite status

messages, and a relative fix of the approximate position of every other active GPS satellite. This

information allows ground based GPS receivers to use data from the strongest satellite beacon to help

locate other satellites.

Figure 6: GPS Satellite Constellation [NASA]

3.6 Wireless Networks

 Wireless networking is a technology that enables computers to communicate using standard IEEE

802 network protocols, using the RF spectrum as the transmission medium. The most widely used

standard is 802.11 produced by the Institute of Electrical and Electronic Engineers (IEEE). This is a

standard defining all aspects of Radio Frequency Wireless networking.

 There are two kinds of wireless networks. The first, a peer-to-peer wireless or ad-hoc network

which consists of a collection of computers each equipped with a wireless networking interface card or

 23

(NIC). Each computer can communicate directly with all of the other wireless “connected” computers.

They may share files this way, but may not be able to access wired Local Area Network (LAN) resources

unless one of the computers acts as a “bridge” to the wired LAN using special hardware and-or software.

Figure 7: Ad-Hoc or Peer to Peer Network

 The second type of wireless network uses an access point, or base station. In this type of network

the access point acts like a hub, providing connectivity for the wireless computers. It can connect or

"bridge" the wireless LAN to a wired LAN, allowing wireless computer access to LAN resources, such as

file servers, remote databases or other remote resources. There are two types of access points:

1. Dedicated Hardware Access Points (HAP) – HAP access points provide most of the features of a

full featured wired network.

Figure 8: Hardware Access Point

 24

2. Software Access Points (SAPs). SAPS are typically computers equipped with a wireless network

interface card and used in an ad-hoc or peer-to-peer wireless network. “Software routers” can be

used as a basic Software Access Point, and include features not commonly found in hardware ,

such as direct “Point-to-Point-over Ethernet” or (PPPoE), but may not offer the full range of

wireless features defined in the IEEE 802.11 standard.

Figure 9: Network using Software Access Point

3.7 Agent-Based Technology

 A software agent is a software component that acts on behalf of another software component or

entity and has the authority to decide when and if some predefined action is appropriate. The idea is that

agents are not strictly invoked for a task, but trigger themselves to act or perform. Nwanna [4] defines the

Agent typology illustrated below:

[4] Nwanna, “Software Agents: An Overview”, Knowledge Engineering Review, 1996

 25

Figure 10: Software Agent Typology

 A specialized instance of a software agent is a “Smart” agent. Smart agents typically perform

tasks requiring learning or reasoning (sometimes defined as “Artificial Intelligence”) and assist the user

(soldier) acting on their behalf, performing repetitive computer-related tasks. Smart agents typically

possess the following characteristics:

� Ability to adapt in real time

� Ability to learn and improve through interaction

� Ability to learn quickly from large amounts of data

� Ability to accommodate new problem solving rules incrementally

� Possess memory based storage and retrieval capacities

� Possess parameters to represent short and long term memory to enable (forgetting)

� Ability to analyze its own behavior, error and or success.

Figure 11: Intelligent Agent [5]

[5] Russell, Norvig, “Artificial Intelligence, A Modern Approach”, Springer Verlag 1995

 26

 A second type of software agent of interest to us is the Mobile agent. A mobile agent is a software

component that can relocate from processor to processor in a heterogeneous, distributed network. The

component decides when and where to migrate. It can put itself to sleep at an arbitrary point, move to

another processor and wake itself on the new processor. Baumann and Hohl [6] details a mobile agent

model where a series of Service agents provide an interface for applications to request the help of a

mobile agent. (Figure 12)

Figure 12: Mobile Agent

 The use of intelligent and mobile based agent software technology is fundamental to the

implementation of the SPSD. In my design, I propose to use both intelligent and mobile based agents to

assist the soldier, with the agents acting as a “second set of ears, eyes and brains”.

3.8 Open Source Software

 So what is Open Source? Open Source software is any software distributed under a license

which allows the end-users to change or share the actual source code itself. Source code is the human

readable, pre-compiled text-form of a computer application. By definition, Open Source applies primarily

[6] Baumann, Hohl, “Mole – Concepts of a Mobile Agent System”, Univ. Stuttgart, 1997

 27

to source code, although the concept of “openness” has begun to spread to other technologies leading to

new genres such as Open-Hardware [7] or hardware whose initial specification, usually in a software

format, are published and made available to the public for free use, Open Source Curriculum defined as

instructional resources whose digital source can be freely used, distributed and modified, and even Open-

Cola - whereas Coke and Pepsi withhold their recipes as closely guarded secrets, volunteers have posted a

formula for a similar drink. The taste is said to be comparable to that of the standard beverages.

 While there are many different kinds of open source software, all have one universal

characteristic: the authors insist that the source code be made available whenever the corresponding

application is used, distributed or modified. In this way, open source is almost the opposite of traditional

intellectual property paradigms like patents and copyrights, which seek to keep knowledge restricted to

the creators or who they choose to sell the knowledge to. In defiance of conventional wisdom and the

economics of intellectual property, open-standards have led to the creation of many significant underlying

innovations throughout the internet community.

 Licensing of open source software is a broad topic. The GNU General Public License or (GPL) is

the most common and widely used open source software license and was authored by Richard Stallman

[8]. According to published accounts, as of April 2004, the GPL accounts for nearly 75% of the over

23,000 free-software projects cataloged on www.freshmeat.net, and about 68% of the projects cataloged

on www.sourceforge.net, the two most popular open source projects sites. In general the GPL grants the

recipients of a computer source code the following rights:

1) The right to run the open source program for any purpose desired.

2) The right to study the internal mechanisms of the program and how it works and the right to
modify it. Obviously access to the source code itself is a precondition for this. Note: This allows
open source to be fruitfully mined for component reuse.

3) The right to redistribute your modified copies.

[7] www.ax84.com, An Open Source Amplifier

 28

4) The right to improve or enhance the program, and release the enhancements to the public. Access
to the source code is a precondition for this.

 The current version of the GPL license, version 3, was released in 2006. GPL3 is said to have

addressed complaints by businesses and be more “commercial” friendly, although as of this writing the

author of the Linux operating system Linus Torvalds has refused to license the Linux kernel under GPL3

and has retained GPL2 [9] as the license for all Linux kernel baselines.

 On the other hand, Closed-Source or for-profit commercial software applications and packages

do not make the source code available; instead they supply and sell the application binaries only

(compiled application source code) – of none or little use to anyone wanting to understand how the

program works and complicating potential component reuse. The source code of such programs is usually

regarded as a proprietary trade secret of the company. Under certain conditions access may be granted to

the source code by third parties but typically the authors will require the party to sign a non-disclosure

agreement or (NDA).

 Critics of open-source argue that its openness is not a virtue but an Achilles’ heel. Linux is

currently the selected operating system for many future U.S. defense systems, such as Future Combat

System (FCS/Army), the Land Warrior, and the Global Information Grid, which is envisioned to connect

future military systems into a single heterogeneous network. Critics claim this is cause for serious concern

and its security is inadequate for defense use. They claim the systems now under development utilizing

open-source components are a national security risk since open-source software is developed under a

cooperative effort of globally dispersed engineers (such as Russia and China) who live in countries not

necessarily on friendly terms with the United States. They argue that foreign intelligence agencies and

terrorists can easily infiltrate the Linux community to contribute subversive software.

[8] “GNU Mainfesto” Dr. Dobbs Journal, 1985
[9] www.linux-watch.com

 29

 Obviously this is of concern and the well-found arguments should be and are currently being

addressed. Examples of this being “Security-Enhanced Linux” developed and controlled by the National

Security Agency (NSA) [10]. In closing, it is my opinion that skilled, knowledgeable, highly trained

engineers can scour the software and detect any security shortcomings or outright holes.

[10] http://www.nsa.gov/selinux/

 30

CHAPTER 4

System Design and Implementation

4.0 Concept and Problem Statement

 Informally, the problem is to develop a lightweight, rugged, handheld device to provide various

services and facilities; such as allow military personnel in the field to display and monitor their own

geographic position as well as viewing the positions of other personnel also equipped with the mobile

display unit (SPSD) (Figure 13), as well as provide a agent-based soldier’s assistant providing features

such as warning of proximity to dangerous areas, shortest or safest route(s) for infiltration or ex-filtration,

shortest route to medical facilities, etc.

Figure 13: SPSD Example Screens [Rockwell Collins]

 31

Specifically features provided include (primary), the ability to tag via mil-std (FM 101-5-1) [14]

symbology, (geographic) areas of interest or potential hazard such as locations of potential IEDs

(Improvised Explosive Devices), general hostile areas, closest medical facilities, plot(s) to closest safe

havens, etc. Software-based “smart” agents will assist the user in locating or avoiding selected areas of

interest. Secondary functions could possibly include language translation, data recording, note taking,

image viewing, and soft field manuals FMs in PDF format, (ex first aid, weapons handling, and

maintenance or procedures field manuals).

More specifically the problem is three-fold:

1) To develop/prototype/assemble the physical unit itself

2) To devise a method or protocol to exchange GPS position information and other areas of interest

with other agents residing on remote SPSD units, as well as displaying shared significant

symbology (waypoints, markers, dangerous landmarks or areas),

3) To develop the agent-based software using only open source components (Cougaar[11]), and to

port any necessary existing software components to the SPSD unit.

4.1 System Design and Implementation

The high-level SPSD system model consists of four parts:

1) SPSD unit

2) Mobile wireless 802.11 hardware infrastructure

3) GPS module

4) End-user open source software components onboard the SPSD unit.

[11] Open source agent development toolkit, DARPA (www.cougaar.org)

 32

4.2 System Model

4.2.1 Soldiers Personal Situation Display

 The actual host CPU for the SPSD was selected and chosen via requirements arrived at by using

Axiomatic Design (AD) techniques. One of the major controlling requirements for this project was all

hardware and software must be Commercial-Off-The-Shelf and open-source derived. Using AD derived

requirements, the processor chosen was a Sharp SL-5500D (Figure 14), as there is a stable open source

(GNU) cross compiling (ARM/arm-linux-gcc 2.95) toolset for this processor.

Figure 14: Sharp SL-5500D

CPU -- 206 MHz Intel SA-1110 Strong-Arm system-on-chip processor

Memory – 64MB DRAM and 16MB Flash

Display -- 3.5-inch 240 x 320-dot pixel TFT 65,536 color LCD with touch panel support

Keyboard -- Front lighted QWERTY keyboard with a slide cover

Dual Card Slots -- Compact Flash (CF) type II and Secure Digital (SD)

I/O ports -- IrDA 1.2, Serial and USB

Audio -- Stereo headset jack with audio input (Recording)

Power source -- Lithium Ion battery (950 mAH)

Battery Life -- 10 hrs (backlight off) 1 hr (backlight on)

 33

Size -- 2.9x5.4x.7 in (with keyboard hidden)

Weight -- 6.8 oz

Table 2: Sharp SL-5500D Specifications

4.2.2 Socket Compact Flash 802.11b Wireless Adapter

 The SPSD must not only be able to graphically display the user’s current geographic position by

means of GPS, it also must be able to transmit each individual user’s current position to its peers and

receive the current positions of its peers via wireless (802.11) and display them on the SPSD/GPS map

grid. Using requirements derived from Axiomatic Design, the Socket Communications P500 Compact

Flash Wireless adapter card (Figure 15) was chosen to fulfill the wireless communications requirements.

Figure 15: Compact Flash Wi-Fi Card [Socket Technology]

Physical Characteristics: Standards Conformance:

Card Size: 56.1 x 42.8 x 3.3 mm Meets 802.1x requirements

Total Mass: 13.6 g Wi-Fi Certified Enterprise Edition

Inserted portion of card is Type I CF WPA2-Enterprise

Power Consumption (3.3 V Supply): CCX v2

Idle: <20 mA IEEE 802.11b and 802.11g

Transmission: 265 mA (peak) Compact Flash Specification 2.0

 34

Transmit Power: Hardware Support:

CCK: 16.5 dBm typical Type I Compact Flash slot

OFDM: 14.5 dBm typical Compact Flash Specification 2.0

Table 3: Compact Flash Wi-Fi Specifications

4.2.3 Wireless 802.11 Network Infrastructure

 One of the most important features if not the single most important feature of the SPSD is

providing the capability to both track and view (via GPS) all members/participants of the secure wireless

network. The Sharp SL5500D provides the client node interface, while the extended wireless network

infrastructure is provided by the Fortress Technology ES520 wireless access bridge. The ES520 was

chosen from requirements derived from an Axiomatic Design exercise. Note: for uses in short, line-of-site

distances, the ES520 would be optional as the SPSDs can each operate stand-alone in an ad-hoc network.

The ES520 (Figure 17) provides secure wireless access to the network via 802.11 a/b/g. An "all-in-one"

device, the ES520 combines an access point, wireless bridge, switch and secure gateway in a compact,

rugged form factor ideal for use in rapid deployment in a tactical network, easily fitted to a HMMWV.

See Figure 16.

Figure 16: HMMWV Mobile Communications Platform

 35

Figure 17: ES520 Wireless Bridge [Fortess Systems]

Back-haul Range -- tested up to 32 miles (antenna-dependent)

Access Range -- tested up to 2 miles (antenna-dependent)

Performance -- up to 100 secure clients

Encryption -- AES-128, 192, 256

WPA2 (80211i) software upgradeable

Authentication -- internal or external RADIUS

Management -- secure browser-based GUI, CLI or SNMP

SSID support -- up to 4 SSIDs

Table 4: ES520 Specifications

 36

4.2.4 Open Source Host/Client Software

 As discussed in the previous section, the single most important feature of the SPSD is providing

the capability to both track and view (via GPS) all members of the secure wireless network. Likewise, the

core “essence” of this exercise is proving the feasibility of reusing 100% open-source COTS based

software for a rapid-prototyped, tactical military device.

 Per the requirements derived initially, the software must provide or support the following: be

small and cheap, a basic navigation function via Global Positioning System (GPS), provide location of

“friendly” forces within the wireless network, provide basic communication function(s), provide wireless

802.11 access, provide basic data reporting/recording /recalling function, support strong, integral onboard

encryption , host an Agent-based “soldier’s helper”, and most importantly be Linux/Open Source based.

Using Axiomatic Design, the following software “components” were identified for the initial

configuration:

Linux Kernel

Qtopia Graphics toolkit/library

OZ -- Open-Zaurus (http://www.openzaurus.org/)

QPE GPS – Open source/Qtopia GPS software (qpeGPS)

QPE MPEG Player – Open source/Qtopia audio record/playback utility

GNU X86/ARM development toolkit (compiler/linker/debugger/GNU 2.95)

Open-Source Wireless Client (QTJim)

Component/Open Source derived Agent-Based Expert System

Table 5: Axiomatic Design derived Software Components

 37

4.2.5 Global Positioning System Module

4.2.5.1 Global Positioning System External Unit

Figure 18: GPS 12 [Garmin International]

Table 6: Garmin GPS-12 Specifications

Navigation features
 Routes: 20 reversible routes with up to 30 points each, plus MOB and Trac-Back modes
 Trac-Back: Automatic track log navigation
 Map datums: 107 including one User Datum
 Coordinates: Lat/Lon, UTM/UPS, plus other grids, including Maidenhead and User Grid

Performance
 Receiver: 12 parallel channel receiver continuously tracks, uses up to 12 satellites to compute
 and update position

 Acquisition times: Approx. 15 seconds warm, 45 seconds cold, 5 minutes with Auto-Locate
 and 45 seconds with EZ-init, easy initialization

 Update rate: 1/second, continuous

 Accuracy: 15 meters (49 feet) RMS, 1-5 meters (3-15 feet) RMS with GARMIN GBR 21
 DGPS receiver (optional) and up to 0.1 knot RMS steady state velocity

Dynamics: 6g’s
Interfaces: NMEA 0183 and RTCM 104 DGPS corrections
Antenna: Internal

 38

4.2.5.2 GPS Communications Mode

 Communications between the external GPS receiver and the SPSD is via RS-232 serial. The

Garmin GPS-12 is capable of outputting NMEA [12] 0183 data. The NMEA 0183 Interface Standard

defines electrical signal requirements, data transmission protocol and time, and specific sentence formats

for a 4800-baud serial data bus. Each bus may have only one talker but many listeners. The Garmin GPS-

12 outputs to the SPSD ASCII text NMEA 0183 “sentences” once per second (1 Hz) in the format:

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47

Where:

 GGA Global Positioning System Fix Data

 123519 Fix taken at 12:35:19 UTC

 4807.038, N Latitude 48 deg 07.038' N

 01131.000, E Longitude 11 deg 31.000' E

 1 Fix quality: 0 = invalid

 1 = GPS fix (SPS)

 2 = DGPS fix

 3 = PPS fix

 4 = Real Time Kinematics

 5 = Float RTK

 6 = estimated (dead reckoning) (2.3 feature)

 7 = Manual input mode

 8 = Simulation mode

 08 Number of satellites being tracked

 0.9 Horizontal dilution of position

 545.4, M Altitude, Meters, above mean sea level

 46.9, M Height of geoid (mean sea level) above WGS84 ellipsoid

 (Empty field) time in seconds since last DGPS update

 (Empty field) DGPS station ID number

 *47 the checksum data, always begins with *

[12] National Maritime Electronics Association

 39

4.3 Axiomatic Design Detail

 Axiomatic Design was developed by Dr. N.P. Suh [15] at MIT, Department of Mechanical

Engineering. Dr. Suh was motivated by the lack of scientific design principles and proposed using axioms

as the scientific foundation of his design process. Out of the twelve axioms first suggested, Suh

concentrated on the following two basic principals for Axiomatic Design:

Axiom 1: The Independence Axiom
Maintain the independence of the functional requirements.

Axiom 2: The Information Axiom
Minimize the information content in a design.

We define the following terms in reference to Figure 4. The set of Functional Requirements (FRs) is the

minimum set of unique requirements that completely describes the design based on needs of the

user/dismounted soldier (also know as Customer Attributes or CAs), and the final design product is

defined as the derived solution that most elegantly and clearly satisfies those requirements (FRs). This is

accomplished through the mapping between the FRs in the functional domain and the Design Parameters

(DPs) in the physical domain and through the mapping in the process domain between the design

parameters DPs and the Process Variables (PVs). The final high-level software components required to

fulfill the mission of the Soldier’s Personal Situation Display (SPSD) will be defined using the techniques

suggested by Suh for developing software systems [16].

4.3.1 Define Functional Requirements of the Software System

 According to Axiomatic Design theory, the first step in designing a software system is

determining the Customer Attributes (CAs) or requirements the software system must satisfy. Then the

Functional Requirements (FRs) and Constraints (Cs) of the software are verified that they do indeed

 40

fulfill the customer requirements, where the FRs are defined as the minimum set of independent

requirements that the design must satisfy [Suh], and the Constraints (Cs) are defined as the bounds upon

the solution(s).

 The high-level requirements defined earlier are as follows - small and cheap, provide a basic

navigation function via GPS, provide location of friendly forces within a definable geographic area,

provide a basic communication and proximity warning function, provide wireless 802.11 access, provide

~ 8 hour battery life, provide basic data reporting/recording /recalling function, support and provide

integral onboard robust encryption, host an agent-based system to assist the soldier in decision making,

and finally – the software must be 100% open source.

 Given the above basic criteria (customer needs), the following Functional Requirements and

Design Constraints were synthesized using axiomatic design techniques:

Software must be 100% Open Source based

Unit must be hand held

Unit must be cheap to produce

Unit battery life must be at least 8 hours

Unit must provide 802.11 (Wi-Fi) access

Unit must be rugged

Unit must provide ROBUST encryption facilities!

Unit must have a graphical display

Unit must have touch pad

Bonus if multi-input (touch-pad and keypad)

Unit must be field upgradeable (firmware/software)

Table 7: Design Constraints

.

 41

Handheld Unit to Display and Manage Information

Handheld Unit to Report and Record Data

Handheld Unit to Provide RF Communications

Handheld Unit to Provide Situational Awareness

Table 8: Top Level Functional Requirements

4.3.2 Mapping Domains to Independent Software Functions

 This step of Axiomatic Design involves mapping the Function Requirements (FRs) for the SPSD

into the actual physical domain (i.e. generating Design Parameters or (DPs)). Axiomatic Design theory

refers to this process as “Decomposition by Zigzagging” (see Figure 4.). While Axiomatic Design

requires the presence of DPs to mathematically satisfy the coupling/decoupling rules, AD does not itself

favor any methods of actually defining the DPs themselves. Other papers and research has been done to

address this particular short-coming using such methods as TRIZ, Knowledge Based Engineering, and

COSEML in conjunction with AD [17]. Tanik, Dogru and Grimes propose using Object Modeling

Technique (OMT) and High-Level Architecture (HLA) standards to address the specific case of potential

interface incompatibility when using software components with AD. Ultimately, however, the various

techniques used for deriving DPs, etc. are beyond the scope of this paper.

 The following components were derived to satisfy the functional requirements via

“Brainstorming”. The initial conceptual Customer Needs (CNs) were driven from my personal

experiences in the U.S. Army and current events in the Middle East (Iraq/Afghanistan). Specifically

relating to the derived DPs, the Garmin GPS-12 was chosen because I already owned one and had tested

it under military conditions, and the unit had a serial interface enabling connection to an external host

processor (SPSD).

 42

Garmin GPS-12 Handheld GPS Receiver

Sharp SL-5500D PIM

Wireless client capability(802.11)

802.11 Infrastructure

Open Source (COTS) S/W (Agents to store waypoints (Lat/Lon) of Areas of Interest

and software to display AOI’s and other hazardous areas[13])

Table 9: Top Level Design Parameters

4.3.3 Define Information Content for Software Systems

 According to the Information Axiom of Axiomatic Design [Suh], the design that has the least

information content is the best design. Suh defines the information content in terms of the probability of

arriving at a design that meets the functional requirements. It can also be calculated in mathematical terms

according to the following expression: Information content (I) = log (1/P), where P is the probability of

successfully satisfying the functional requirements. The probability of successfully satisfying the (FRs) is

represented as the function of both the design range to satisfy (range designer trying to satisfy), and the

capability of the proposed solution known as the system range. But how is the information content of a

design quantified? Metrics might be measured by number of lines of code, the MIPS rate consumed by

the host, or the levels of decomposition and the maximum count of the FRs of the system. Unfortunately,

these are not absolute measures of the inherent complexity, but more of a “WAG” in my opinion.

Ultimately I made the decision to use very loose tolerances to minimize information content, as this is a

Rapid Application Development (RAD) exercise.

 43

4.3.4 Decompose FRs, DPs, PVs, and Software Modules

 This step of Axiomatic Design involves breaking down the top-level requirement and design

parameters to the lowest level via decomposition where they can be mapped directly to either a software

component or a stand-alone piece of COTS hardware that fulfills and meets the requirement (see Figure

19). Before decomposing to a lower level, the DPs must be determined for that level in the physical

domain. This iterative process is called zigzagging. It is worth noting that at this phase of design, it is not

unusual to reanalyze the original specifications as “over-specifying” requirements may limit design

decisions.

Figure 19: Requirements Decomposition to Leaf Level via Axiomatic Design

 As one of the fundamental purposes of this exercise was to discover and experiment with

divergent techniques to assist in the fielding of a rapid-prototyped, “quick-turn” produced device, extra

attention was paid when decomposing requirements. When rapid-prototyping with the intent of

maximizing the use of COTS components, great care must be taken when decomposing high level

[13] This software is “To-Be-Developed” open-source derived

 44

requirements. Requirements should be studied closely and reasoning applied as to not decompose a

requirement to such a refined (leaf) level, such that a COTS component is unable to reasonably satisfy

that requirement. An example might be where a specification existed for a piece of software to provide a

service {A}, but a preexisting open source software component was known to exist and provide services

{A, B, C}. In some cases it would probably be cheaper and quicker to either modify the existing open

source component software or alter your specification as opposed to developing an entire new component.

In these cases it is best to obtain the advice of a domain expert when one is available and can assist you.

In my case, I made frequent use of a Google-like search engine called rpmfind [14] and a centralized

web-site containing thousands of open source projects covering different technology domains –

sourceforge [15]. Using rpmfind I was able to enter the needed term (“wireless”), and all open source

packages containing that term were returned (Figure 20). Using the sourceforge site, I was able to quickly

locate an open source java based software development package for designing, coding, and debugging

agent-based components called Cougaar (Cognitive Agent Architecture funded by DARPA [16]) .

Having access to tools such is rpmfind and sourceforge can be invaluable to the developer when faced

with short schedules and quick turn-around times. A domain expert will typically possess the knowledge

and whereabouts of tools such as rpmfind, sourceforge and others. Being able to instantly search for and

access the needed open source components based on requirements and other criteria proved invaluable.

[14] http://www.rpmfind.net (A search tool for Linux/open source based packages and components)
[15] http://www.sourceforge.net, Central site for all open source projects
[16] Defense Advanced Research Projects Agency

 45

Figure 20: RPMFind Web based search engine

4.3.4.1 Functional Requirement Decomposition

 At this point, the Top-Level Requirements are decomposed to the lowest level at which they can

be satisfied or as-close-as-possibly be satisfied by preexisting open source components or COTS

hardware. RPMFind was used predominantly in the location of software component packages. The initial

top level design matrices containing refined functional requirements and design parameters are shown

below.

 46

Functional Requirements Design Parameters
 PDA Software GPS Radio

System to Display/Manage Data X

Provide Expert System X X

System to Provide

Geographical Orientation

X X

System to Provide Basic

RF Communications

X X

Table 10: Top Level Design Matrix

4.3.4.1.1 Data Management Subsystem

 The Data Management subsystem onboard the SPSD should provide at least the basic leaf-level

functionality of what most other palm-top operating systems. I chose to use the “Open-Zaurus”[17]

palmtop environment as it meets the basic requirements of:

1) Component software is open source

2) Component software comes packaged with “Make” files for the host target -
(Sharp SL-5500D/ARM processor) and therefore requires no porting!

3) Component provides all the functionality of the native Sharp supplied OS ROM and more – audio
playback and record, note-taker, generic light weight database, web-browser (Opera), image
viewer.

Functional Requirements Design Parameters
 PDA Recording

Software

Database

Software

OS/Adapter

Software

System to Categorize/Store Data X X
System to Process Data X X X
System to Run Applications X X X X

Table 11: Secondary Data Management Design Matrix

[17] [Open-Zaurus] http://openzaurus.sourceforge.net/

 47

4.3.4.1.2 Agent Based Expert System

 The “Expert” subsystem (one of two primary subsystems) onboard the SPSD should provide the

soldier with an Agent/Knowledge-Based (AKB) system allowing him or her to quickly access pertinent

data or intelligence via an encrypted data path. The AKB system should interface with an internal

persistent database and allow the storage and referencing of locations via military grid coordinate (UTM)

of hazardous areas, locations of closest medical facilities, safe extraction routes. The onboard AKB

should also provide access to field manuals such as (military procedures, repair, first-aid, or weapons

handling).

 The AKB system could also incorporate a programmable rudimentary language translation

facility [18] such as those described by [Losh]. There are currently class room oriented computer-based

language trainers [18] but I propose integrating this feature into the SPSD. Current computer/lab based

language trainers offer elaborate scenarios involving cultural and nationalistic scenarios that are clearly

beyond the capability of a hand-help unit. From my experience, in most cases a simple dictionary

translation facility is more than adequate for the dismounted soldier on patrol. Open Source components

such as “Babel-Chat” exist that perform rudimentary translations, but were not evaluated. Per Axiomatic

Design techniques the basic requirements of the SPSD AKB system are listed in Table 12.

 Functional Requirements Design Parameters
 PDA Recording

Software

Database

Software

Agent

Software

Translation

Software
System to Record Logs or Notes X X
Provide a Database function X X
Provide ability to warn soldier of

Geographic located hazards

X X X X

Provide Rudimentary

Language Translation

X X X

Table 12: Agent-Based Subsystem Design Matrix

[18] http://www.tacticallanguage.com/tacticaliraqi/

 48

 Currently the U.S Army has two active programs researching and developing new

technologies to assist the dismounted soldier in the field: “Land Warrior” and the larger “Future

Combat Systems” of which Raytheon is the prime sensor integrator. As seen below in Figure 21,

the “Land Warrior” concept is a fairly complex and expensive set of equipment. Other systems

proposed (such as the Eyekon) include complex, expensive optical based helmet mounted

displays (see Figure 22). Although no dollar amount has been published, I would expect the price

to be in the thousands of U.S dollars. The SPSD will not fulfill all the requirements of the Land

Warrior system, but it will meet many of them for pennies on the dollar.

Figure 21: Land Warrior Combat System

 49

Figure 22: Eyekon System

[21CSI Systems]

 In comparison, the Future Combat (Warrior) System (FCW) system contains a Sensors &

Communications Vision subsystem for the soldier containing the following: squad level communications

using JTRS Cluster 5 Soldier (Software) Radio, state-of-the-art distributed and fused sensors, tactical

intelligence and collection assets, enhanced situational awareness, embedded training, on-the-move

planning, and linkage to other Future Combat System assets. The SPSD does not intend to replace any

of the above systems, only serve as a cheap, interim solution. The SPSD could be built and fielded now

with COTS hardware and software; whereas the other proposed systems are years away from fielding.

 50

Figure 23: Future Warrior System (FWS) System [U.S. Army]

4.3.4.1.2.1 Agent Based Expert System Detail

 I propose using smart agent and mobile agent technology to enable a soldier with a GPS-driven,

graphical hand-help geographic situation display (SPSD) to assign an agent via touchpad to monitor a

specific area of interest (AOI), such as areas of previous IED detonations, or areas known to be

frequented by enemy combatants. Using (wireless) mobile agents, all SPSDs participating within the

same wireless network would exchange “intel-data” used to feed the rule-based software warning

monitor/engine. An example might be where a dismounted patrol notices the presence of a particular

vehicle or group of individuals known to be potentially hostile. A soldier would input the data into his or

her SPSD and the mobile agents would migrate throughout the wireless network monitoring for data

triggers input from other assets, feeding the AI based local smart agents who would then queue all

soldiers within the area via graphic or audible warning of the potential hazard.

 51

Figure 24: Agent Enhanced Wireless Network

Figure 25: Agent-Based Guidance Display [(modified) Agile Systems]

 52

Such a model as I propose has been described by DARPA in partner with Lockheed-Martin. They

conducted research involving the use of agents in military applications which they called Domain

Adaptive Information System (DAIS) specifically for use in military Command and Control (C2) systems.

 At the highest level – the model can be represented as a sensor-based mesh network. McGrath,

Chacon and Whitebread [19] chose to represent the topology using three agent entities or operations:

1) Information Pull (i.e. database queries)

2) Information Push – (i.e. report dissemination to small units)

3) Sentinel Monitoring – (i.e. conflict monitoring) implemented with a Java based framework called
Extendable Mobile Agent Architecture or (EMAA) [20].

Figure 26: Agent Based Warning System

 In the same paper they also describe a “Distributed Event Messaging System” used for agent

communications. Likewise, Cougaar provides a rich and deep set of tools such as the “Message

Transport Service” (MTS), which is an adaptive JVM-level (Java) service that handles all inter-agent

 53

communication within a Cougaar cluster. The MTS is componentized and includes adaptive features

that can be selected at runtime. Asynchronous transport protocols can be plugged into the MTS as

components, where standard protocols include RMI, CORBA, HTTP, and UDP. Granted this entire

agent-based software subset as described does not exist in a COTS/Component package, but Cougaar

provides the open source tools needed to design, develop and debug a robust agent based system.

Helsinger, Thome and Wright [21] detail the services provided by Cougaar, such as persistence, plug-

ins, quality of service (QOS), and a yellow-pages (YP) based network lookup service. Note: Cougaar

also provides a lightweight embedded version (“MicroEdition”) of its agent infrastructure ideally

suited for our host processor. Other open source toolkits such as Tryllian [19] exist, but in the

author’s opinion, Cougaar is better supported and seems to have a wider development community

with excellent documentation.

Figure 27: Cougaar Service Hierarchy

[19] http://www.tryllian.org/

 54

4.3.4.1.3 Geo-Orientation Subsystem

 The heart of the SPSD is the Geo-Orientation subsystem. Currently fielded military GPS systems

such as the Precision Lightweight GPS Receiver or (PLGR) are bulky and have no [20] graphic display,

and more importantly - hard to come by. From my experience in the U.S. Army within the Combat Arms

community, many soldiers resorted to using COTS based GPS receivers such as the Garmin GPS-12

when in the field, as PLGRs were near impossible to acquire. I also might add that since Selective

Availability has been disabled – experience has shown me that my COTS based 12 channel

receiver (Garmin GPS-12) is more accurate than the 5 channel PLGR unit although the PLGR

has anti-spoofing features. “GPS Spoofing”[21] or feeding of or broadcasting to a GPS receiver

false data is mentioned but not covered in this paper as it is beyond the scope of my discussion

and intent.

Figure 28: Precision Lightweight GPS Receiver (PLGR) [Rockwell Collins]

[20] [Pathfinder Magazine] “PLGR Only Authorized GPS Receiver for Combat Ops”, Jul 2003
[21] Warner and Johnson, “GPS Spoofing Countermeasures”, Los Alamos Labs, LAUR-03-6163

 55

Functional Requirements

 Design Parameters

 PDA GPS H/W GPS Open Source S/W

Unit to Provide Soldiers with

Geographic Location

X X

Unit to Display other Soldiers,

Points of Interest or Hazards

X X X

Table 13: Secondary Geo-location Design Matrix

 The SPSD will not only graphically display its current position; it will also display anyone else’s

position on the map grid that is also equipped with an SPSD. Virtually anything of any tactical value

could also be displayed on the SPSD such as other members of a squad or platoon, vehicles, command

posts (CPs), etc. It is also a requirement (Design Constraint) that all participants of the Wi-Fi 802.11

communications net will use strong (at least 128 bit) encryption.

 The current implementation of the SPSD uses an external GPS receiver connected to the SL-

5500D via serial cable. Running onboard the SPSD is an open source component called “gpsd[22]”,

which is a monitor daemon that listens on a selectable TCP/IP port waiting for applications to request

information from GPSs or differential-GPS radios attached to the host processor. Each GPS receiver is

expected to be direct-connected to the host via a USB or RS232C serial port. At startup, gpsd discovers

the correct port speed and protocol to use (NMEA-0183).

Using gpsd as a baseline software component, I propose adding the following:

1. Modify the gpsd daemon process to read in the one-per-second (1Hz) NMEA sentence of the

format mentioned in section 4.2.5.2, (NMEA Sentence Format), and concatenate the user id, etc.

onto the end of the NMEA sentence (Figure 29), and then broadcast this as an encrypted message

 56

to all participants of the 802.11 network. Each participant (SPSD) would then receive this

message and the NMEA sentence would be parsed, reformatted and sent to the local gpsd’s

TCP/IP socket where it would be processed and displayed on the SPSD screen.

$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,MY_USER_ID,*47

Figure 29: Modified NMEA sentence

2. Modify the gpsd code to read incoming broadcast messages or code another lightweight process

to read broadcast messages from remote SPSD units and assign a unique icon to each unique user

id to enable target differentiation on the SPSD display.

Figure 30: Functioning gpsd display (satellite ephemeris)

[22] http://gpsd.berlios.de/

 57

Figure 31: Functional qpeGPS/SPSD display

 This design will enable all participants of a broadcast network to see each and everyone else’s

detailed geographical position with minor code modifications. Note: Use of the commercial (COTS)

Garmin GPS-12 was borne of necessity (money) as I was limited on funds and already owned a Garmin

GPS-12 receiver. This implementation is strictly to demonstrate the feasibility of the SPSD. There are

currently many fielded single chip GPS systems [23] on the market and if theoretically fielded, the units

could easily be incorporated into a single handheld unit

4.3.4.1.4 GIS Display Mapping

 The display of geographic data on computer systems is typically done via Geographic

Information System (GIS) software and hardware systems. GIS systems provide facilities for creating,

analyzing managing and storing map data all in a standardized format. The agent-based software would

[23] [SiRFstarIII™ GPS Single Chip] http://www.sirf.com/Downloads/Collateral/GSC3(f)_6.20.05.pdf

 58

be required to provide visual queues to the GIS-based software driving the SPSD GPS display. The open-

source community provides a rich set of GIS related tools which are 100% compliant with current GIS

standards guaranteeing full inter-operability with all GIS hardware and software. After researching the

available tools, “Open-Map” seemed to provide the features needed. OpenMap is an open source, java-

based toolkit for developing applications that manipulate GIS formatted geographic information.

OpenMap components can access data from other GIS applications locally or distributed.

Figure 32: OpenMap Infrastructure [BBN Technology]

Current Army doctrine dictates that GIS-system equipped HMMWVs assist the command and control

(C
2

) structure by producing current up-to-date digital hard and soft format maps. These maps could be

either distributed to the infantrymen on compact-flash or encrypted and transmitted via 802.11 to enable

the display of fresh up-to-date topographic information on the SPSDs.

Figure 33: HMMWV-based Mobile Mapping Vehicle [U.S. Army]

 59

4.3.4.1.5 RF Communications Subsystem (Wi-Fi)

 While the GPS subsystem of the SPSD may be the heart and the Agent subsystem its brain, its

backbone is its RF wireless capability via 802.11. The requirements for the wireless capability of the

SPSD were also quickly synthesized using Axiomatic Design techniques. During requirements

generation, Axiomatic Design allowed me to quickly determine I needed either a Compact-Flash (CF) or

Secure Digital (SD) solution for a wireless interface. This assisted me in choosing a Sharp SL-5500D as it

has both CF and SD interfaces. The only PDA with both interfaces I was able to locate. The final

constraint on determining the Wi-Fi interface was money ($). Once again as this is a prototype unit – I

choose the cheapest solution I could find – a Socket Technologies (Figure 15) 802.11b CF card.

Axiomatic Design techniques assisted greatly in this case also, as it allowed me to quickly see that a

coupling existed between the operating system versions and the wireless card. I was able then to insure

that I could locate a compatible wireless card. The Socket P500 is 100% compatible the open source

Linux kernel/device driver (2.4.18+ and 2.6.X) and worked perfect the first time!

 The second required piece of hardware to complete a deployable tactical network which supports

the SPSD is the Fortress ES520 portable wireless access point (Figure 17). The SPSD was conceived to

be deployed in a harsh environment where most likely there will be no available network infrastructure

(areas such as Iraq or Afghanistan). To operate an extended, long-range Wi-Fi network, a base station or

“Access Point” is required, as a simple Ad-Hoc/Peer-to-Peer network would be totally unusable as the

range would be limited to approximately 300 ft. See section 3.6 for introduction to Wi-Fi networks.

Functional Requirements Design Parameters
 PDA Wi-Fi H/W Wi-Fi Open Source S/W

System to TX/RX GPS Data X X X

System to TX/RX Data X X X

Table 14: Secondary RF Communications Design Matrix

 60

4.3.5 Definition of Modules

 It is during this phase of development that a divergence from traditional axiomatic design was

seen fit. Suh states at this point “At the leaf level, any software programming language, e.g. C++ or Java

can be used to write the modules as long as they are internally consistent …..”. Since one of the major

objectives of this endeavor is the utilization of COTS based open-source software, the techniques

proposed by Dogru and Tanic [22], and Repenning, Ioannidou, Payton, Ye and Roschelle [23] involving

techniques for Component Oriented Software Engineering were adopted.

4.3.5.1 Component Oriented Software Engineering Detail

 COSE can be defined as the development and reuse of software elements which offer a

predefined service and are able to communicate with other elements or “components”. Software

component(s) typically share the following traits:

� Multi-use

� Non-context-specific

� Ability to easily integrate with other components

� Encapsulated or non-investigable through its interfaces

� Singular unit of independent deployment and versioning

With this definition, it is easy to realize open-source software is a rich field for component-based

development and re-use harvest. However, some software will need to be developed (knowledge-based

expert system) since no current open-source project fully meets all the requirements. As noted previously,

there are many open-source subcomponents available to quickly construct a knowledge-based expert

 61

system or “super-component” [24]. Dogru and Tanik refer to this paradigm as a “component-oriented”

approach as opposed to a “component-based” model, where “component-oriented approach emphasizes

the composition of existing components”.

 As the development of the SPSD is by definition a very short period development process, some

form of rapid-prototyping model was needed. Repenning, Ioannidou, Payton, Ye and Roschelle propose a

model called “CORD” or Component-Oriented Rapid Development [9]. The CORD model was

investigated but was found to be too heavy-weight and more “team” oriented. CORD proposes a number

of parallel threads or distributed discrete teams working on sets of components. This was determined to

be unusable as the development team was composed of just one developer - myself. Hence a lighter

weight model was needed. I searched and found a development model that met my requirements, adopted

itself elegantly to the COSE model, and would enable me to deliver the SPSD on-time. This development

model being “Test-Driven Development”[24].

[24] Dogru, Tanik, “Process Model for COSE” IEEE Software 2003

 62

4.3.5.2 Test-Driven Approach for COSE

 “Test-Driven” (TD) Development involves iteratively writing a test case and then implementing

only the code necessary to pass that singular test only. Several features immediately leap out at the

developer seeking to either use or reuse software components:

1) the delivery of rapid feedback related to the application to the developer when using TD

2) the Test-Driven model can be applied to the improvement of existing software and removal of

software defects from legacy code that was not developed using TD [24] as described in text.

Figure 34: Test-Driven Development Cycle

Kent Beck, the creator of “eXtreme Programming” (XP) defines two simple rules for Test Driven

Development [24]. One, “you should write new code only when an automated test has failed”. Second,

“you should eliminate any duplication that you find”. Beck explains in his text [24] how these two simple

rules drive the TD development process:

 63

1) “You design organically, with the running code providing feedback between decisions.”

2) “You write your own tests because you can't wait 20 times per day for someone else to write
them for you.”

3) “Your development environment must provide rapid response to small changes (e.g. you need a
fast compiler and regression test suite).”

4) “Your designs must consist of highly cohesive, loosely coupled components (e.g. your design is
highly normalized) to make testing easier (this also makes evolution and maintenance of your
system easier too).”

 It is of the author’s opinion that this particular development model fits exceptionally well with the

COSE model because a.) By definition – the components must already exist per the definition of a

“component” as defined earlier, and b.) Point 4 defined by Beck – components are also by definition,

highly cohesive and loosely coupled. I propose to use Axiomatic Design to provide the input for Test-

Driven development by adding the additional first 2 steps shown below.

Figure 35: Proposed Axiomatic Design feeding Test-Driven Design

 64

4.3.5.3 Module Detail, Attributes, and Operations

 Essentially all required components exist already “assembled”, except for the Knowledge-Based

“Artificial Intelligence” system used to assist the dismounted soldier with the tactical decision making

process.

4.3.5.4 Establishment of Interfaces

 The interfaces between all of the COTS based components are predefined and were able to be

used as-is with little or no modification. The GPS module(s) (gpsd and qpeGPS) were already designed to

communicate via TCP/IP socket. The modifications needed to interface to the wireless module would be

expected to listen on the same socket; hence virtually no interface changes are needed.

 The Agent based software would need to be developed using an open source toolkit. After a side

by side comparison, I elected to specify “Cougaar”, as it has a rich and well supported java-based

infrastructure that support both massively distributed and tiny, embedded development. The agent-based

architecture I envisioned would be distributed but not massively so (“where bigger is better”). Being a

distributed system, I would propose that a rapid-prototyped development cycle leading to deployment be

adopted. That is, where one infers “throw-away” or “one-off” intent, where the application would be

discarded using standard “rapid-prototyping” – I would use the “Test-Driven” (TD) approach of

continuously refining the prototype. Togay, Dogru, Tanik and Grimes [18] discuss such a methodology

(“Component Oriented Simulation Development with Axiomatic Design”) and use “High Level

Architecture” (HLA). The authors [18] use HLA as an example/model as HLA adheres to OMT

standards for interface design.

 High-Level Architecture or (HLA) is a DOD standard for inter-connecting computer simulation

 65

systems enabling them to run together and exchange information. As opposed to building large

monolithic systems from the ground up, High-Level Architecture provides the standards allowing you to

combine preexisting simulation-based systems with newer systems. HLA provides the ability to reuse

preexisting systems for new development. HLA also provides for using diverse programming languages

and/or operating systems. The High Level Architecture (HLA) provides the following components:

• Interface Specification. The interface specification document defines how HLA compliant

simulators interact

• Runtime infrastructure (RTI). (Cougaar) The RTI provides a programming library and an

application programming interface (API) compliant to the interface specification.

• Object Model Template (OMT). The OMT specifies what information is communicated between

simulations and how it is documented.

• HLA Rules. Rules that simulations must obey to be compliant to the standard.

 When implementing an HLA-based system, an HLA compliant simulation is referred to as a

federate. A federation is defined as a set of simulations connected via RTI using a common OMT. An

object is a set of related data containing attributes or data-fields, sent between simulations. Interactions

are defined as events sent between simulations and may also contain parameters or data fields.

Figure 36: High-Level Architecture Environment [Pitch HLA]

 66

4.4 GPS Statistical Accuracy Predictions

 Accuracy and precision are two terms used to describe and quantify how “good” or accurate the

acquired position of a GPS receiver is. Accuracy is the degree of closeness of a prediction related to its

true value. Precision is the degree of closeness of all observations to their means. As shown in Figure 37

below, the true position is located in the intersection of the cross hairs. The centroid of the shaded area is

the mean estimated position, while the radius is the measured uncertainty.

Figure 37: GPS Accuracy Correlations

 67

As an example, if you know the current position given as Latitude(a), Longitude(a), and the location that

a GPS receiver reports to you is Lat(b), Lon(b), you can compute the current error with:

Laterr, Lonerr = Latb,Lonb – Lata,Lona

If you take a GPS navigation fix elsewhere in the field at Lat(c), Lon(c), you can compute an accurate

position, by adding in the offset:

Latgood, Longood = Latc, Lonc– Laterr, Lonerr

The US Coast Guard uses this approach near coastal waterways and transmits the datum via long wave

radio stations and their system is free to use. In many areas, differential GPS may be available via FM

broadcast station typically on a fee based schedule.

Note: On May 1, 2000, Selective Availability or (SA), which resulted in the intentional degradation of

GPS signals, was terminated. With this enhancement, a GPS without a Differential GPS unit became

almost as accurate as a GPS with a Differential GPS.

4.4.1 Calculating Horizontal Position Accuracy

 Calculating the horizontal accuracy of a GPS receiver involves determining the degree of

conformance between the estimated or measured position, time, and/or velocity of a GPS receiver and its

true time, position, and/or velocity as compared with a constant standard. Radio navigation system

accuracy is usually presented as a statistical measure of system error and is characterized as follows:

• Predictability - The accuracy of a radio navigation system's position solution with respect to the

charted solution. Both the position solution and the chart must be based upon the same geodetic

datum.

 68

• Repeatability - The accuracy with which a user can return to a position whose coordinates have

been measured at a previous time with the same navigation system.

• Relativity - The accuracy with which a user can measure position relative to that of another user

of the same navigation system at the same time.

To calculate the two dimensional position errors, the Distance Root Mean Squared (DRMS) is used

where:

Distance_Root_Mean_Squared =
22

yx σσ +

DRMS is a scalar number that expresses 2D accuracy. In order to compute the DRMS of a horizontal

errors, the standard errors (σ) from the known position(s) in the direction of the Cartesian coordinate

axis (X, Y) are required.

 The Standard Deviation (σ) or the square root of the variance, measures how spread out the

values in a data set are. If the data points are all similar, then the standard deviation will be low (closer to

zero). If the data points are highly variable, then the standard variation is high (further from zero). The

standard deviation is always a positive number and is always measured in the same units as the original

data. For example, if the data are distance measurements in meters, the standard deviation will also be

measured in meters. Measured position errors of GPS receivers can range from tens of meters for

recreational uses to a few millimeters for the survey of land, depending on equipment, signals and usage.

 Another method of calculating and representing GPS horizontal error is Circle Error

Probability or (CEP). CEP refers to the radius of a circle in which 50% of the values occur, i.e. if a CEP

of 5 meters is quoted then 50% of the horizontal point positions should fall within 5 meters of the true

position. The circle error of probability (CEP) is formally defined as the size of the circle that

encompasses 50% of all the location fixes. So, if you collect 100 position fixes and select the 50 closest

 69

ones, the circle that includes these is how certain you can be of your location. Simply stated, a CEP of

100 meters means that 50% of all position fixes are within 100 meters.

Circle_Error_Probability = xy σσ 56.062.0 +

 Similar to the CEP, the Distance Root Mean Square (DRMS) describes 67% of all position

fixes, 2 DRMS describes 95% of the fixes, and 3 DRMS describes 100% of the fixes. Figure 38 illustrates

this pattern.

Figure 38: Circle Error Probability/Distance Root Mean Square Error Scatter Plot

4.4.2 GPS Accuracy Conclusions (Is it good enough?)

 As mentioned earlier, the intentional degradation of GPS signals known as Selective Availability

was terminated as of May 2000. With this enhancement, a GPS without a Differential GPS unit became

almost as accurate as a GPS with a Differential GPS attached. As observed in the Garmin factory

specifications (Table 6), with Selective Availability enabled the predicted accuracy of the Garmin GPS 12

is 100m (2DRMS). The Garmin factory specification also advertises a predicted accuracy of (1-5) meters

using a Differential GPS beacon.

 70

 As observed from the collected statistical sampling and testing (Appendix 7.2), my calculated

accuracies were as follows: 3.52m 2DRMS, 3.399m 2DRMS, 2.620m 2DRMS and 2.923m 2DRMS. The

mean of the 4 sample DRMSs is 3.091 meters. These results compare quite favorable with Garmin’s

published accuracy data. Since two of the four sample histories were taken during intense rain and the

results compared favorably with those taken during clear atmospheric conditions, it can be surmised that

signal attenuation due to rainfall is negligible. (Note: before this could be taken as fact more strenuous

testing would be needed. Although information gleaned from internet searches states that rainfall

attenuation of GPS signaling is negligible).

 In closing, it is of the author’s opinion that a 1 to 3 meter predicted horizontal GPS accuracy is

more than adequate for the intended use providing the dismounted soldier with a device capable of

tracking and marking objects of a tactical nature, and providing a grid-based situational display with a 5

to 10 meter scale.

4.5 802.1X Wi-Fi vs. WiMAX (Statistical Range Predictions)

 Typical outdoor ranges for 802.11g range from 1800 ft to 2500 ft. This would in the authors’

opinion, be perfectly suitable for use at the squad level on typical patrol duty. It’s also worth noting there

are many workarounds available (range extenders/amplifiers). I would propose investigating the emerging

new 802.16 standard known as “WiMAX”. WiMAX offers exponential increases in range and throughput

compared to standard 802.11X Wi-Fi as well as better security features. The limited range, bandwidth and

throughput of Wi-Fi limits the dismounted soldier to relative close ranges to access points or peers. On

the contrary, a single WiMAX base station can service a wide geographic area (30 to 40 square miles).

 71

Examples of WiMAX 802.16 ranges:

• Hawaii, through dense palm trees and rolling hills (non line-of-site), (1.86 miles), 26 Mbps

• Ireland, through ancient cathedrals and other landscape ruins (non-LOS), (7.45 miles), 24 Mbps

• Quebec City, Canada, partial visibility (optical line of sight (OLOS)), (33 miles), 18 Mbps

• Idaho, USA, (72 miles) with a local mountain partially blocking , 24 Mbps

• Boston, through dense trees (complete non-LOS), (1.86 miles), 26 Mbps

• Markham, ON, Canada, through a business park (non-LOS), (1.86 miles), 56 Mbps

Figure 39: Wi-Fi vs. WiMAX [wimaxx.com]

References

[1] Peters, Look, Quigly, Shrobe, and Gajos, “Hyperglue: Designing High-Level Agent
 Communications for Distributed Applications”, MIT, 2002
[2] Dolev, Gilbert, Schiller, Shvartsman and Welch, “Autonomous Virtual Mobile Nodes”, MIT, 2005
[3] Gray, Kotz, Cybenko and Rus, “D’Agents: Security in a multiple-language mobile agent system”,

 72

 Dartmouth College, 1998
[4] Wendleken, McGrath, Blike, “Agent Based Casualty Care – Medical Expert for Triage Care”
 Dartmouth College, 2004
[5] Brewington, Gray, Moizumi, Kotz, Cybenko, Rud, “Mobile Agents in distributed information
 retrieval”, Dartmouth College, 1999
[6] Dogru and Tanik, “A Process Model for Component-Oriented Software Engineering”, IEEE Software,
 2003
[7] Dogru, “Component Oriented Software Engineering”, theAtlas Press, 2006
[8] Suh and Doh, “Axiomatic Design of Software Systems” Axiomatic Design Solutions, Inc. MIT
[9] Repenning, Ioannidou, and Payton, “Using Components for Rapid Distributed Software
 Development”, IEEE Software, 2001
[10] Jacob, “Not Your Father’s CORBA”, Embedded Systems Journal, 2004
[11] Martin, Cheyer, and Moran, “The Open Agent Architecture: A Framework for Building Distributed
 Systems”, SRI Intl, 2004
[12] Mitre , “Use of Free and Open-Source Software (FOSS) in the U.S. Department of Defense”,
 Mitre Corp., 2003
[13] Ackerman, “Army Teaches Soldiers New Intelligence-Gathering Role”, Signal Journal, April 2005
[14] FM Field Manual Operational Terms and Graphics United States Army United States Marine Corp
[15] Suh, Axiomatic Design: Advances and Applications, Oxford University Press, Ch 4, 2001
[16] Suh, Axiomatic Design: Advances and Applications, Oxford University Press, Ch 5, 2001
[17] Dogru, Tanik, and Grimes, “Component Oriented Simulation with Axiomatic Design”, IDPT-2006
[18] Losh, "In Country with Tactical Iraqi: Trust, Identity, and Language Learning in a Military Video
 Game”, UC Irvine, 2005
[19] McGrath, Chacon and Whitebread, “Intelligent Mobile Agents in Military Command and Control”,
 Proceedings of the Autonomous Agents Conf., 2000
[20] Letini, Rao Theis, Kay, “EMAA: An Extendable Mobile Agent Architecture”, Fifteenth Natl. Conf.
 on AI, 1998
[21] Helsinger, Thome, Wright, “Cougaar: A Scalable Distributed Multi-Agent Architecture”, IEEE SW
 2004
[22] Dogru, Tanic, “A Process Model for Component-Oriented Software Engineering”, IEEE Software
 2003
[23] Repenning, Ioannidou, Payton, Ye and Roschelle, “Using Components for Rapid Distributed
 Software Development”, IEEE Software 2001
[24] Beck, “Test Driven Development: By Example”, Addison Wesley, 2003

